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We study the competition between Kondo physics and dissipation within an Anderson model of a magnetic
impurity level that hybridizes with a metallic host and is also coupled, via the impurity charge, to the displace-
ment of a bosonic bath having a spectral density proportional to �s. As the impurity-bath coupling increases
from zero, the effective Coulomb interaction between two electrons in the impurity level is progressively
renormalized from its repulsive bare value until it eventually becomes attractive. For weak hybridization, this
renormalization in turn produces a crossover from a conventional spin-sector Kondo effect to a charge Kondo
effect. At particle-hole symmetry, and for sub-Ohmic bath exponents 0�s�1, further increase in the impurity-
bath coupling results in a continuous zero-temperature transition to a broken-symmetry phase in which the
ground-state impurity occupancy n̂d acquires an expectation value �n̂d�0�1. The response of the impurity
occupancy to a locally applied electric potential features the hyperscaling of critical exponents and � /T scaling
that are expected at an interacting critical point. The numerical values of the critical exponents suggest that the
transition lies in the same universality class as that of the sub-Ohmic spin-boson model. For the Ohmic case
s=1, the transition is instead of Kosterlitz-Thouless type. Away from particle-hole symmetry, the quantum
phase transition is replaced by a smooth crossover but signatures of the symmetric quantum critical point
remain in the physical properties at elevated temperatures and/or frequencies.
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I. INTRODUCTION

Quantum impurity models have intrigued physicists for
more than half a century.1 In recent years, the focus has
largely been on models that exhibit quantum phase transi-
tions �QPTs�. Strictly, these are boundary QPTs at which
only a subset of system degrees of freedom becomes
critical.2 Boundary QPTs not only serve as prototypes for the
bulk QPTs encountered �or postulated to exist� in many
strongly correlated systems,3,4 but in certain cases they are
amenable to controlled realization in quantum-dot setups.5

Of great current interest are dissipative quantum impurity
models that describe a dynamical local degree of freedom
coupled to one or more bosonic modes representing a
frictional environment. Experiments on single-molecule
transistors6 have drawn attention to transport through nan-
odevices featuring electron-phonon interactions as well as
local electron-electron interactions. The essential physics of
these experiments seems to be captured in variants7–12 of the
Anderson-Holstein model, which augments the Anderson im-
purity model13 with a Holstein coupling of the impurity oc-
cupancy to a local �nondispersive� phonon mode. The
Anderson-Holstein model has been studied since the 1970s
in connection with the phenomenon of mixed valence14–16

and has also been adapted to treat the effect of negative-U
tunneling centers on superconductivity.17,18 The many theo-
retical approaches that have been applied to these models
have yielded general agreement that phonons serve to reduce
the effective Coulomb repulsion between electrons in the im-
purity level, or even to produce an attractive net electron-
electron interaction. Most challenging has been the study of
simultaneous strong Coulomb repulsion and strong electron-
phonon coupling. Here, the most robust solutions have been
provided by an extension of the numerical renormalization-

group �NRG� technique, long established as a reliable tool
for tackling pure-fermionic quantum impurity problems.19–21

NRG studies8,10,15 have shown that in the one-channel
Anderson-Holstein model, descriptive of a single molecule
coupled symmetrically to source and drain leads, increasing
the phonon coupling from zero results in a smooth crossover
from a conventional Kondo effect, involving conduction-
band screening of the impurity spin degree of freedom, to a
predominantly charge Kondo effect in which it is the impu-
rity “isospin” or deviation from half-filling that is quenched
by the conduction band. However, even for very strong
electron-phonon couplings, the ground state remains a many-
body Kondo singlet and there is no QPT. By contrast, a two-
channel model describing a single-molecular transistor with
a center-of-mass vibrational mode exhibits a line of QPTs
manifesting the critical physics of the two-channel Kondo
model.12

An even greater theoretical challenge is posed by quan-
tum impurities coupled to dispersive bosons. A canonical ex-
ample is the spin-boson model,22 which describes tunneling
within a two-state system coupled to a bosonic bath. The
model has many proposed applications, including frictional
effects on biological and chemical reaction rates,23 cold at-
oms in a quasi-one-dimensional optical trap,24 a quantum dot
coupled to Luttinger-liquid leads,25 and study of entangle-
ment between a qubit and its environment.26,27 In many
cases, the dissipative bosonic bath can be described by a
spectral density �formally defined in Eq. �8� below� that is
proportional to �s at low frequencies �. The spin-boson
model with an Ohmic �s=1� bath has long been known22 to
exhibit a Kosterlitz-Thouless QPT between delocalized and
localized phases. The existence of a QPT for sub-Ohmic �0
�s�1� baths was for some years the subject of debate.22,28

However, clear evidence for a continuous QPT has been pro-
vided by the NRG,27,29,30 by perturbative expansion in �=s
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about the delocalized fixed point,31 and through exact-
diagonalization calculations.32

Theoretical activity has also centered on the Bose-Fermi
Kondo �BFK� model,33 in which an impurity spin-1

2 degree
of freedom is coupled both to a fermionic band of conduc-
tion electrons and to one or more bosonic baths. BFK models
arise in the context of unconventional heavy-fermion quan-
tum criticality treated within extended dynamical mean-field
theory �extended DMFT� �Ref. 34� and have also been pro-
posed to describe quantum dots coupled either to a noisy
environment35 or to ferromagnetic leads.36 Studies of BFK
models having different spin rotation symmetry—SU�2�, XY,
or Ising—employing either expansion37 in �=1−s or the
NRG �Refs. 38 and 39� have found continuous QPTs be-
tween phases exhibiting the Kondo effect and localized
phases in which impurity spin flips are suppressed by the
coupling to the bosonic bath�s�. For exponents 0�s�1,
most evidence suggests that the continuous QPTs of the spin-
boson and of Ising-anisotropic BFK models are equivalent.
QPTs outside the spin-boson universality class have been
identified in dissipative models featuring a pseudogap in the
electronic density of states.40

In this paper, we combine the themes outlined in the pre-
ceding paragraphs by investigating a charge-coupled Bose-
Fermi Anderson (BFA) model in which the impurity not only
hybridizes with conduction-band electrons but also is
coupled, via its electron occupancy, to a bath representing
acoustic phonons or other bosonic degrees of freedom whose
dispersion extends to zero energy. The model was introduced
more than 30 years ago41–43 in connection with the mixed-
valence problem. A spinless version of the model was also
discussed in the same context.44 More recently, very similar
models have been shown to arise as effective impurity prob-
lems in the extended DMFT for one- and two-band extended
Hubbard models.45,46 Hitherto, only limited progress has
been made toward understanding the physics of such models,
and we are aware of no study of their possible QPTs.

Our NRG study of the charge-coupled BFA model with
bosonic baths characterized by exponents 0�s�1 reveals a
crossover with increasing electron-boson �e-b� coupling
from a spin Kondo effect to a charge Kondo effect, very
similar to that noted previously in the Anderson-Holstein
model.8,10,15 However, under conditions of strict particle-hole
symmetry, further increase in the e-b coupling leads to com-
plete suppression of Kondo physics at a quantum critical
point. Beyond the critical e-b coupling lies a localized phase
in which charge fluctuations on the impurity site are frozen.
For sub-Ohmic baths �0�s�1�, the QPT is continuous and
the numerical values of the critical exponents describing the
response of the impurity charge to a locally applied electric
potential demonstrate that the transition belongs to the same
universality class as that of the spin-boson and Ising BFK
models. For Ohmic baths �corresponding to s=1�, the QPT is
found to be of Kosterlitz-Thouless type. Particle-hole asym-
metry acts in a manner analogous to a magnetic field at a
conventional ferromagnetic ordering transition, smearing the
discontinuous change in the ground state as a function of e-b
coupling into a smooth crossover. Signatures of the symmet-
ric quantum critical point remain in the physical properties at
elevated temperatures and/or frequencies.

It is important to note that questions have been raised as
to whether or not the NRG method reliably captures the
quantum critical behavior of the spin-boson and Ising BFK
models for bath exponents 0�s�

1
2 . It is a standard belief3,4

that the low-energy behavior near a quantum phase transition
in d spatial dimensions is equivalent to that of a classical
transition in d+z dimensions, where z is the dynamical ex-
ponent. In the case of the spin-boson and Ising BFK models,
for which d=0 and z=1, the corresponding classical system
is a one-dimensional Ising chain with long-ranged interac-
tions that decay for large separations r like r−�1+s�. The Ising
chain is known to possess an interacting critical point for 1

2
�s�1 but to exhibit a mean-field transition49 for 0�s�

1
2 .

By contrast, NRG studies of the spin-boson31 and Ising BFK
�Refs. 38 and 39� models have found non-mean-field behav-
ior extending over the entire range 0�s�1, leading to a
claim of breakdown of the quantum-to-classical mapping.31

This claim has recently been contradicted by continuous-
time Monte Carlo50 and exact diagonalization32 studies. De-
bate is ongoing concerning the interpretation of these various
results.50,51 The eventual resolution of this debate may deter-
mine the validity of the small subset of our NRG results that
concerns the critical exponents of the charge-coupled BFA
model with bath exponents 0�s�

1
2 . There is every reason

to believe that the remaining results are physically sound.
The rest of this paper is organized as follows. Section II

introduces the charge-coupled BFA Hamiltonian and summa-
rizes the NRG method used to solve the model. Section III
contains a preliminary analysis of the model, focusing on the
bosonic renormalization of the effective electron-electron in-
teraction within the impurity level. Numerical results for the
symmetric model with sub-Ohmic �0�s�1� dissipation are
presented and interpreted in Sec. IV. Section V treats the
symmetric model with Ohmic �s=1� dissipation. Section VI
discusses the effects of particle-hole asymmetry. The paper’s
conclusions are presented in Sec. VII.

II. MODEL AND SOLUTION METHOD

A. Charge-coupled Bose-Fermi Anderson Hamiltonian and
related models

In this work, we investigate the charge-coupled Bose-
Fermi Anderson model described by the Hamiltonian

ĤCCBFA = Ĥimp + Ĥband + Ĥbath + Ĥimp-band + Ĥimp-bath, �1�

where

Ĥimp = �dn̂d + Un̂d↑n̂d↓, �2�

Ĥband = �
k,�

�kck�
† ck�, �3�

Ĥbath = �
q

�qaq
†aq, �4�

Ĥimp-band =
1

�Nk
�
k,�

�Vkck�
† d� + Vk

*d�
†ck�� , �5�
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Ĥimp-bath =
1

�Nq

�n̂d − 1��
q

�q�aq + a−q
† � . �6�

Here, d� annihilates an electron of spin z component �
= �

1
2 �or � � ↑, ↓� and energy �d�0 in the impurity level,

n̂d�=d�
†d�

† , n̂d= n̂d↑+ n̂d↓, and U	0 is the Coulomb repulsion
between two electrons in the impurity level. Vk is the hybrid-
ization between the impurity and a conduction-band state of
energy �k annihilated by fermionic operator ck�, and �q char-
acterizes the coupling of the impurity occupancy to bosons in
an oscillator state of energy �q annihilated by operator aq. Nk
is the number of unit cells in the host metal and, hence, the
number of inequivalent k values. Correspondingly, Nq is the
number of oscillators in the bath, and the number of distinct
values of q. Without loss of generality, we take Vk and �q to
be real and non-negative. Throughout the paper, we drop all
factors of the reduced Planck constant 
, Boltzmann’s con-
stant kB, the impurity magnetic moment g�B, and the elec-
tronic charge e.

To focus on the most interesting physics of the model, we
assume a constant hybridization Vk=V and a flat conduction-
band density of states �per unit cell, per spin-z orientation�

���� 	
1

Nk
�
k


�� − �k� = 
�0 = �2D�−1 for ��� � D

0 otherwise,
�

�7�

defining the hybridization width �=��0V2. The bosonic bath
is completely specified by its spectral density, which we take
to have the pure power-law form

B��� 	
�

Nq
�
q

�q
2
�� − �q�

= 
�K0��2�1−s�s for 0 � � � �

0 otherwise,
� �8�

characterized by an upper cutoff �, an exponent s that must
satisfy s	−1 to ensure normalizability, and a dimensionless
prefactor K0�. In this paper, we present results only for the
case �=D in which the bath and band share a common
cutoff. We also adopt the convention that K0 is held constant
while one varies �, which we term the electron-boson �e-b�
coupling. It should be emphasized, though, that the key fea-
tures of the model are a nonvanishing Fermi-level density of
states � �0� 	 0 and the asymptotic behavior B�����s for �
→ 0. Relaxing any or all of the remaining assumptions laid
out in this paragraph will not alter the essential physics of the
model, although it may affect nonuniversal properties, such
as the locations of phase boundaries.

For many purposes, it is convenient to rewrite20 the im-
purity part of the Hamiltonian �dropping a constant term �d�

Ĥimp = 
d�n̂d − 1� +
U

2
�n̂d − 1�2, �9�

where 
d=�d+U /2. Most of the results presented below
were obtained for the symmetric model characterized by �d
=−U /2 or 
d=0, for which the impurity states nd=0 and

nd=2 are degenerate in energy. Section VI addresses the be-
havior of the asymmetric model.

In any realization of ĤCCBFA involving coupling of acous-
tic phonons to a magnetic impurity or a quantum dot, the
value of the bath exponent s will depend on the precise in-
teraction mechanism. However, phase space considerations
suggest that any such system will lie in the super-Ohmic

regime s	1. Models closely related to ĤCCBFA have also
been considered in the context of extended DMFT,46,47 a
technique for systematically incorporating some of the spa-
tial correlations that are omitted from the conventional
DMFT of lattice fermions.48 Extended DMFT maps the lat-
tice problem onto a quantum impurity problem in which a
central site interacts with both a fermionic band and one or
more bosonic baths, the latter representing fluctuating effec-
tive fields due to interactions between different lattice sites.
The charge-coupled BFA model serves as the mapped impu-
rity problem for various extended Hubbard models with non-
local density-density interactions.45,46 In these settings, the
effective bath exponent s is not known a priori but is deter-
mined through self-consistency conditions that ensure that
the central site is representative of the lattice as a whole. The
extended DMFT treatment of other lattice models34 gives
rise to exponents 0�s�1, and we expect this also to be the
case for the extended Hubbard models.

At the Hartree-Fock level,42 the impurity properties of
Hamiltonian �1� are identical to those of the Anderson-
Holstein Hamiltonian,

ĤAH = ĤA + �0a†a + �0�n̂d − 1��a + a†� , �10�

which augments the well-studied Anderson impurity
model,13

ĤA = Ĥimp + Ĥband + Ĥimp-band, �11�

with a Holstein coupling of the impurity charge to a single
phonon mode of energy �0. At several points in the sections

that follow, we compare and contrast our results for ĤCCBFA

with those obtained previously for ĤAH.

B. Numerical renormalization-group method

We solve the charge-coupled BFA model using the NRG
method,19–21 as recently extended to treat models involving
both dispersive bosons and dispersive fermions.38,39 The full
range of conduction-band energies −D���D �bosonic-bath
energies 0 � � � �� is divided into a set of logarithmic
intervals bounded by �= �D�−k ��=��−k� for k
=0,1 ,2 , . . ., where � 	 1 is the Wilson discretization param-
eter. The continuum of states within each interval is replaced
by a single state, namely, the particular linear combination of

band �bath� states within the interval that enters Ĥimp-band

�Ĥimp-bath�. The discretized model is then transformed into a
tight-binding form involving two sets or orthonormalized
operators: �i� fn� �n=0,1 ,2 , . . . � constructed as linear com-
binations of all ck� having ��k��D�−n and �ii� bm �m
=0,1 ,2 , . . . � mixing all aq such that 0��q���−m. This
procedure maps the last four parts of Hamiltonian �1� to
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Ĥband
NRG = D�

n=0

�

�
�

��nfn�
† fn� + �n�fn�

† fn−1,� + fn−1,�
† fn��� ,

�12�

Ĥbath
NRG = ��

m=0

�

�embm
† bm + tm�bm

† bm−1 + bm−1
† bm�� , �13�

Ĥimp-band
NRG =�2�D

�
�f0�

† d� + d�
† f0�� , �14�

Ĥimp-bath
NRG =

�K0�

���s + 1�
�n̂d − 1��b0 + b0

†� . �15�

Here, �0= t0=0, while the remaining coefficients �n, �n, em,
and tm, which include all information about the conduction-
band density of states ���� and the bosonic spectral density
B���, are calculated via Lanczos recursion relations.39 For a
particle-hole-symmetric density of states such as that in Eq.
�7�, �n=0 for all n.

The coefficients �n in Eq. �12� vary for large n as D�−n/2,
while em and tm entering Eq. �13� vary for large m as ��−m.
Therefore, the problem can be solved iteratively by diagonal-

ization of a sequence of Hamiltonians ĤN �N=0,1 ,2 , . . . �
describing tight-binding chains of increasing length. At itera-
tion N�0, Eq. �12� is restricted to 0�n�N, while Eq. �13�
is limited to 0�m�M�N�. The spirit of the NRG is to treat
fermions and bosons of the same energy scale at the same
iteration. Since the bosonic coefficients decay with site index
twice as fast as the fermionic coefficients, after a few itera-
tions the iterative procedure requires extension of the
bosonic chain only for every second site added to the fermi-
onic chain. In this work, we have chosen for simplicity to
work with a single high-energy cutoff scale D	�. It is then
convenient to add to the bosonic chain at every even-
numbered iteration so that the highest-numbered bosonic site
is M�N�= �N /2�, where �x� is the greatest integer less than or
equal to x.

The NRG method relies on two additional approxima-
tions. Even for pure-fermionic problems, it is not feasible to
keep track of all the eigenstates because the dimension of the
Fock space increases rapidly as we add sites to the chains.
Therefore, only the lowest lying Ns many-particle states can
be retained after each iteration. The presence of bosons adds
the further complication that the Fock space is infinite-
dimensional even for a single-site chain, making it necessary
to restrict the maximum number of bosons per chain site to a
finite number Nb. Provided that Ns and Nb are chosen to be
sufficiently large �as discussed in Sec. IV A�, the NRG solu-
tion at iteration N provides a good account of the impurity
contribution to physical properties at temperatures T and fre-
quencies � of order D�−N/2.

Hamiltonian �1� commutes with the total spin-z operator

Ŝz =
1

2
�n̂d↑ − n̂d↓� +

1

2�
n

�fn↑
† fn↑ − fn↓

† fn↓� , �16�

the total spin-raising operator

Ŝ+ = d↑
†d↓ + �

n

fn↑
† fn↓ 	 �Ŝ−�†, �17�

and the total “charge” operator

Q̂ = n̂d − 1 + �
n

�fn↑
† fn↑ + fn↓

† fn↓ − 1� , �18�

which measures the deviation from half-filling of the total
electron number. One can interpret

Îz =
1

2
Q̂, Î+ = − d↑

†d↓
† + �

n

�− 1�nfn↑
† fn↓

† 	 �Î−�† �19�

as the generators of an SU�2� isospin symmetry �originally

dubbed “axial charge” in Ref. 53�. Since �Ĥimp-bath , Î���0,
the charge-coupled BFA model does not exhibit full isospin
symmetry. However, this symmetry turns out to be recovered
in the asymptotic low-energy behavior at certain
renormalization-group fixed points.

As described in Ref. 20, the computational effort required
for the NRG solution of a problem can be greatly reduced by
taking advantage of these conserved quantum numbers. In
particular, it is possible to obtain all physical quantities of
interest while working with a reduced basis of simultaneous

eigenstates of Ŝ2, Ŝz, and Q̂ with eigenvalues satisfying Sz
=S. With one exception noted in Sec. IV G, any Ns value
specified below represents the number of retained �S ,Q�
multiplets, corresponding to a considerably larger number of
�S ,Sz ,Q� states.

Even when advantage is taken of all conserved quantum
numbers, NRG treatment of the charge-coupled BFA model
remains much more demanding than that of the Anderson
model �Eq. �11�� or the Anderson-Holstein model �Eq. �10��.
Being nondispersive, the bosons in the last model enter only

the atomic-limit Hamiltonian Ĥ0, allowing solution via the
standard NRG iteration procedure. For Bose-Fermi models

such as ĤCCBFA, the need to extend a bosonic chain as well
as a fermionic one at every even-numbered iteration N	0

expands the basis of ĤN from 4Ns states to 4�Nb+1�Ns states
and multiplies the CPU time by a factor 
�Nb+1�3. Since we
typically use Nb=8 or 12 in our calculations, the increase in
computational effort is considerable.

The choice of value for the NRG discretization parameter
� involves trade-offs between discretization error �mini-
mized by taking � to be not much greater than 1� and trun-
cation error �reduced by working with ��1�. Experience
from other problems38,39,52 indicates that critical exponents
can be determined very accurately using quite a large �.
Most of the results presented in the remaining sections of the
paper were obtained for ��9, with ��3 being employed in
the calculation of the impurity spectral function. For conve-
nience in displaying these results, we set �=D=1 and omit
all factors of �0 and K0.

III. PRELIMINARY ANALYSIS

We begin by examining the special cases in which the
impurity level is decoupled either from the conduction band
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or from the bosonic bath. Understanding these cases allows
us to establish some expectations for the behavior of the full
model described by Eq. �1�.

A. Zero hybridization

If one sets ��0 in Eq. �1�, then the conduction band
completely decouples from the remaining degrees of free-
dom and can be dropped from the model, leaving the zero-
hybridization model

ĤZH = 
d�n̂d − 1� +
U

2
�n̂d − 1�2 + �

q
�qaq

†aq

+
1

�Nq

�n̂d − 1��
q

�q�aq + a−q
† � . �20�

The Fock space separates into sectors of fixed impurity oc-
cupancy �nd=0, 1, or 2�, within each of which the Hamil-
tonian can be recast, using displaced-oscillator operators

ānd,q = aq +
�q

�Nq�q

�nd − 1� , �21�

in the trivially solvable form

ĤZH�nd� = Ĥimp� + �
q

�qānd,q
† ānd,q, �22�

where

Ĥimp� = 
d�n̂d − 1� +
Ueff

2
�n̂d − 1�2. �23�

The bosons act on the impurity to reduce the Coulomb inter-
action from its bare value U to an effective value

Ueff = U −
2

Nq
�
q

�q
2

�q
= U −

2

�
�

0

� B���
�

d� . �24�

For the bath spectral density in Eq. �8� with −1�s�0,
one finds that for any nonzero e-b coupling �, Ueff=−� and
the singly occupied impurity states drop out of the problem.
For the remainder of this section, however, we will instead
focus on bath exponents s	0, for which Eqs. �8� and �24�
give

Ueff = U −
2�K0��2

�s
� . �25�

For weak e-b couplings, Ueff is positive and the ground state

of ĤZH lies in the sector nd=1 where the impurity has a spin
z component �

1
2 . However, Ueff is driven negative for suffi-

ciently large �, placing the ground state in the sector nd=0 or
nd=2 where the impurity is spinless but has a charge �rela-
tive to half filling� of �1 or �1.

Figure 1 illustrates this renormalization of the Coulomb
interaction for the symmetric model �
d=0�, in which the
nd=0 and nd=2 states always have the same energy. In this
case, all four impurity states become degenerate at a cross-
over e-b coupling

K0�c0 = ��sU/2� . �26�

The impurity contributions to physical properties at this spe-
cial point, which is characterized by effective parameters �
=U=�d=0, are identical to those at the free-orbital fixed
point20 of the Anderson model.

For the general case of an asymmetric impurity, the sec-
tors nd=0 and 2 have a ground-state energy difference
E0�nd=2�−E0�nd=0�=2
d for any value of �. The overall
ground state of Eq. �20� is a doublet �nd=1, S= �

1
2 � for

small e-b couplings, crossing over to a singlet �nd=0 for

d	0 or nd=2 for 
d�0� for large �. At K0�c0

=��s�U /2− �
d�� /�, a point of threefold ground-state degen-
eracy, the impurity contributions to low-temperature �T
� �
d�� physical properties are identical to those at the
valence-fluctuation fixed point20 of the Anderson model.

Using the NRG with only a bosonic chain �Eq. �13��
coupled to the impurity site, we have confirmed the existence
for 
d=0 of a simple level crossing from a spin-doublet
ground state for ���c0 to a charge-doublet ground state for
�	�c0. In the former regime, the bosons couple only to the
high-energy �nd=0,2� impurity states, so the low-lying spec-
trum is that of free bosons obtained by diagonalizing Hbath

NRG

given in Eq. �13�. Here, NRG truncation plays a negligible
role provided that one works with Nb�8 �say�.

For �	�c0, the low-lying bosonic excitations should, in
principle, correspond to noninteracting displaced oscillators
having precisely the same spectrum as the original bath.
However, the occupation number aq

†aq in the ground state of
Eq. �22� obeys a Poisson distribution with mean �q

2 / �Nq�q
2�.

Thus, the total number of bosons corresponding to operators
aq satisfying ��−�k+1���q���−k takes a mean value

�n̂k�0 = �
��−�k+1�

��−k

d�
B���
��2

= �
�K0��2

�
ln � for s = 1

�K0��2

�

��1−s − 1�
�1 − s�

��1−s�k otherwise.� �27�

λ
0 2

2

E

U

n

c0
2

n d = 0, 2

d

λ

= 1

U1
2 eff

�

FIG. 1. Symmetric zero-hybridization model defined by ĤZH in
Eq. �20� with 
d=0: evolution with e-b coupling �2 of the lowest
eigenenergy in the spin sector �nd=1, solid line� and in the charge
sector �nd=0,2, dashed line�. A level crossing occurs at �=�c0

specified in Eq. �26�.
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The bath states in the kth interval are represented by NRG
chain states 0�m�k, with the greatest weight being borne
by state m=k. Thus, a faithful representation of the
displaced-oscillator spectrum requires inclusion of states
having bm

† bm up to several times �n̂m�0; based on experience
with the Anderson-Holstein model,15 one expects Nb
�4�n̂m�0 to suffice. Given that �n̂m�0���1−s�m, it is feasible
to meet this condition as m→� so long as the bath exponent
satisfies s�1. Indeed, for Ohmic and super-Ohmic bath ex-
ponents, the NRG spectrum for � not too much greater than
�c0 is found to be numerically indistinguishable from that for
��0. For s�1, by contrast, the restriction bm

† bm�Nb leads,
for �	�c0 and large iteration numbers, to an artificially trun-
cated spectrum that cannot reliably access the low-energy
physical properties. Nonetheless, observation of this “local-
ized” bosonic spectrum serves as a useful indicator, both in
the zero-hybridization limit and in the full charge-coupled
BFA model, that the effective e-b coupling remains nonzero.

Another interpretation of Eq. �27� is that at the energy
scale E=��−k characteristic of interval k, the e-b coupling

takes an effective value �̃�E� governed by the
renormalization-group equation

d�̃

d ln��/E�
=

1 − s

2
�̃ , �28�

which implies that the e-b coupling is irrelevant for s	1,
marginal for s=1, and relevant for s�1. While the NRG
method is capable of faithfully reproducing the physics of

ĤCCBFA for arbitrary renormalizations of �d, U, and �, its
validity is restricted to the region

�K0�̃�2 �
�NB

4

1 − s

�1−s − 1
——→

�→1 �NB

4 ln �
. �29�

For ��9 and NB=8, as used in most of our calculations, the

upper limit on the “safe” range of K0�̃ varies from 1.7 for
s=1 to 0.9 for s=0.

We now focus on the value of the crossover e-b coupling
�c0 determined using the NRG approach. Figure 2 shows for
five different bosonic bath exponents s that K0�c0 has an
almost linear dependence on the NRG discretization � in the
range 1.6���4. We believe that the rise in K0�c0 with �
reflects a reduction in the effective value of K0 arising from
the NRG discretization. It is known20 that in NRG calcula-
tions for fermionic problems, the conduction-band density of
states at the Fermi energy takes an effective value

��0� = �̄0 = �0/A�, �30�

where

A� =
ln �

2

1 + �−1

1 − �−1 . �31�

The general trend of the data in Fig. 2 is consistent with there
being an analogous reduction in the bosonic bath spectral
density that requires the replacement of K0 by

K̄0 = K0/A�,s �32�

when extrapolating NRG results to the continuum limit
��1. However, we have not obtained a closed-form expres-
sion for A�,s.

Table I lists values �c0��→1� extrapolated from the data
plotted in Fig. 2. For s�0.4, these values are in good agree-
ment with Eq. �26�. For s=0.2, however, the extrapolated
value of �c0 lies significantly above the exact value, indicat-
ing that for given � the NRG underestimates the bosonic
renormalization of U. This is most likely another conse-
quence of truncating the basis on each site of the bosonic
tight-binding chain.

In analyzing our NRG results for the full charge-coupled
BFA model, we attempt to compensate for the effects of dis-
cretization and truncation by replacing Eq. �25� by

TABLE I. Crossover coupling �c0 for ĤZH �Eq. �20�� with U=0.1, 
d=0, and five different values of the
bath exponent s: comparison between �c0�exact� given by Eq. �26� and �c0��→1�, the extrapolation to the
continuum limit of numerical values obtained for Ns=200, Nb=16, and 1.6���4. Parentheses surround the
estimated nonsystematic error in the last digit.

s 0.2 0.4 0.6 0.8 1.0

�c0�exact� 0.177 0.251 0.307 0.355 0.396

�c0��→1� 0.188�4� 0.250�2� 0.307�2� 0.355�2� 0.397�3�

1.0 2.0 3.0 4.0
Λ

0.2

0.3

0.4

λ c0

0 0.5 1
00.51
Γ = 0

00.51
00.51

00.51
00.51

s = 0.2

00.51
00.51

00.51
00.51
0.4

00.51
00.51

00.51
00.51
0.6

00.51
00.51

00.51
00.51
0.8

00.51
00.51

00.51
00.51
1

FIG. 2. Dependence of the level-crossing coupling �c0 on the

discretization � for the NRG solution of ĤZH �Eq. �20�� with U
=0.1, 
d=0, Ns=200, Nb=16, and five different values of the bath
exponent s. Dashed lines show linear fits to the data.
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Ueff
NRG = U�1 − ��/�c0�2� . �33�

Here, �c0 is not the theoretical value predicted in Eq. �26� but
rather is obtained from runs carried out for � � 0 but other-
wise using the same model and NRG parameters as the data
that are being interpreted.

B. Zero electron-boson coupling

For � � 0, the bosonic bath decouples from the electronic
degrees of freedom, which are then described by the pure
Anderson model. In this section, we briefly review aspects of
the Anderson model that will prove important in interpreting
results for the charge-coupled BFA model. For further details
concerning the Anderson model, see Refs. 1 and 20.

For any �	0, and for any U and 
d	�d+U /2 �whether
positive, negative, or zero�, the stable low-temperature re-
gime of the Anderson model lies on a line of strong-coupling
fixed points corresponding to ���. At any of these fixed
points, the system is locked into the ground state of the

atomic Hamiltonian Ĥ0, and there are no residual degrees of
freedom on the impurity site or on site n=0 of the fermionic
chain; the NRG excitation spectrum is that of the
Hamiltonian20

ĤSC
NRG�V1� = D�

n=1

�

�
�

�n�fn�
† fn−1,� + fn−1,�

† fn��

+ V1��
�

f1�
† f1� − 1� . �34�

The coefficients �n are identical to those entering Ĥband
NRG �Eq.

�12��, except that here �1=0. Note that in Eq. �34�, the sum
over n begins at 1 rather than 0.

As shown in Ref. 20, the strong-coupling fixed points of
the Anderson model are equivalent—apart from a shift of 1
in the ground-state charge Q defined in Eq. �18�—to the line
of frozen-impurity fixed points corresponding to �d=�, �
=U=0, with NRG excitation spectra described by

ĤFI
NRG�V0� = Ĥband

NRG + V0��
�

f0�
† f0� − 1� . �35�

The mapping between alternative specifications of the same
fixed-point spectrum is20

��̄0V0 = − ���̄0V1�−1, �36�

where �̄0 �see Eq. �30�� is the effective conduction-band den-
sity of states.

The fixed-point potential scattering is related to the
ground-state impurity charge via the Friedel sum rule,

�n̂d − 1�0 =
2

�
arccot���̄0V0� =

2

�
arctan�− ��̄0V1� .

�37�

For �
d�, ��U�D, one finds that

�n̂d − 1�0 = −
8
d�

�A�U2 , �38�

where A� is defined in Eq. �31�.

Even though the stable fixed point of the Anderson model
for any �	0 is one of the strong-coupling fixed points de-
scribed above, the route by which such a fixed point is
reached can vary widely, depending on the relative values of
U, 
d, and �. For our immediate purposes, it suffices to focus
on the symmetric �
d=0� model, for which there is a single
strong-coupling fixed point corresponding to V0= �� or
V1=0. If the on-site Coulomb repulsion is strong enough that
the system enters the local-moment regime �T, ��U�, then
it is possible to perform a Schrieffer-Wolff transformation54

that restricts the system to the sector nd=1 and reduces the
Anderson model to the Kondo model described by the
Hamiltonian

ĤK = Ĥband +
Jz

4Nk
�n̂d↑ − n̂d↓��

k,k�

�ck↑
† ck�↑ − ck↓

† ck�↓�

+
J�

2Nk
�
k,k�

�d↑
†d↓ck↓

† ck�↑ + H.c.� , �39�

where

�0Jz = �0J� =
8�

�U
. �40�

The stable fixed point is approached below an exponentially
small Kondo temperature TK when the spin-flip processes

associated with the J� term in ĤK cause the effective values
of �0Jz and �0J� to renormalize to strong coupling, resulting
in many-body screening of the impurity spin.

Motivated by the discussion in Sec. III A, we also con-
sider the case of strong on-site Coulomb attraction. In the
local-charge regime �T, ��−U�, a canonical transformation
similar to the Schrieffer-Wolff transformation restricts the
system to the sectors nd=0 and nd=2 and maps the Anderson
model onto a charge Kondo model described by the Hamil-
tonian

ĤCK = Ĥband +
Wd

Nk
�n̂d − 1��

k,k�

�ck↑
† ck�↑ + ck↓

† ck�↓ − 
k,k��

+
2Wp

Nk
�
k,k�

�d↑
†d↓

†ck↓ck�↑ + H.c.� , �41�

where

�0Wd = �0Wp =
2�

��U�
. �42�

In this case, the stable fixed point is approached below an
exponentially small �charge� Kondo temperature TK when
the charge-transfer processes associated with the Wp term in

ĤCK cause the effective values of �0Wd and �0Wp to renor-
malize to strong coupling, resulting in many-body screening
of the impurity isospin degree of freedom �associated with
the d-operator terms in Eqs. �19��.

Between the opposite extremes of large positive U and
large negative U is a mixed-valence regime �T, �U���� in
which interactions play only a minor role. Here, the stable
fixed point is approached below a temperature of order �

QUANTUM PHASE TRANSITIONS IN A CHARGE-COUPLED… PHYSICAL REVIEW B 80, 165113 �2009�

165113-7



when the effective value of �� / �2�D� scales to strong cou-
pling, signaling strong mixing of the impurity levels with the
single-particle states of the conduction band.

C. Expectations for the full model

Insight into the behavior of the full charge-coupled BFA
model described by Eqs. �1�–�6� can be gained by perform-

ing a Lang-Firsov55 transformation ĤCCBFA→ ĤCCBFA�

= Û−1ĤCCBFAÛ with

Û = exp��n̂d − 1��
q

�q

�Nq�q

�aq − aq
†�� . �43�

The transformation eliminates Ĥimp-bath, leaving

ĤCCBFA� = Ĥimp� + Ĥband + Ĥbath + Ĥimp-band� , �44�

where Ĥimp� is as defined in Eqs. �23� and �24�, and

Ĥimp-band� =
1

�Nk
�
k,�

Vk exp��

q

�q�aq − aq
†�

�Nq�q
�ck�

† d�

+ Vk
* exp�− �

q

�q�aq − aq
†�

�Nq�q
�d�

†ck�� . �45�

In addition to renormalizing the impurity interaction from U

to Ueff entering Ĥimp� , the e-b coupling causes every hybrid-
ization event to be accompanied by the creation and annihi-
lation of arbitrarily large numbers of bosons.

In the case of the Anderson-Holstein model �Eq. �10��,
various limiting behaviors are understood.18 In the instanta-
neous limit �0��, the bosons adjust rapidly to any change
in the impurity occupancy; for �0

2 /�0�U��0, the physics
is essentially that of the Anderson model with U→Ueff,
while for �0

2 /�0�D ,U ,�, there is also a reduction from � to
� exp�−��0 /�0�2� in the rate of scattering between the nd
=0 and nd=2 sectors, reflecting the reduced overlap between
the ground states in these two sectors. In the adiabatic limit
�0��, the phonons are unable to adjust on the typical time
scale of hybridization events, and neither U nor � undergoes
significant renormalization.

Similar analysis for the charge-coupled BFA model is
complicated by the presence of a continuum of bosonic mode
energies �, only some of which fall in the instantaneous or
adiabatic limits. Nonetheless, we can use results for the cases
� � 0 �Sec. III A� and � � 0 �Sec. III B�, as well as those for
the Anderson-Holstein model, to identify likely behaviors of
the full model. Specifically, we focus here on the evolution
with decreasing temperature of the effective Hamiltonian de-
scribing the essential physics of the symmetric ��d=−U /2�
model at the current temperature. This effective Hamiltonian
is obtained under the assumption that real excitations of en-
ergy above the ground state E��T—where � is a number
around 5, say—make a negligible contribution to the observ-
able properties, and thus can be integrated from the problem.

Based on the preceding discussion, one expects that at
high temperatures T��, the physics of the charge-coupled
BFA model will be very similar to that of the Anderson

model with U replaced by Ũ��T�, where

Ũ�E� = U −
2

�
�

E

� B���
�

d� . �46�

Note that Ũ�0� is identical to Ueff defined in Eq. �24�. For the
bath spectral density in Eq. �8� with s	0,

Ũ�E� = U −
2�K0��2

�s
�1 − �E/��s�� . �47�

When analyzing NRG data, we instead use

ŨNRG�E� = U�1 − ��/�c0�2�1 − �E/��s�� , �48�

where �c0 is the empirically determined value discussed in
connection with Eq. �33�.

If, upon decreasing the temperature to some value TLM,

the system comes to satisfy Ũ��TLM�=� max�TLM,��, then
it should enter a local-moment regime described by the ef-

fective Hamiltonian ĤLM= ĤK+ Ĥbath with the exchange cou-

plings in ĤK �Eq. �39�� determined by Eq. �40� with U

→ Ũ��TLM�, similar to what is found in the Anderson-
Holstein model.8 Since they couple only to the high-energy
sectors nd=0 and nd=2 that are projected out during the
Schrieffer-Wolff transformation, the bosons should play little
further role in determining the low-energy impurity physics.
The outcome should be a conventional Kondo effect where
the e-b coupling contributes only to a renormalization of the
Kondo scale TK.

If, instead, at some T=TLC the system satisfies Ũ��TLC�
=−� max�TLC,��, then it should enter a local-charge regime
described by the effective Hamiltonian

ĤLC = ĤCK + Ĥbath + Ĥimp-bath. �49�

Based on the behavior of the Anderson-Holstein model,8 one

expects Wd in ĤCK �Eq. �41�� to be determined by Eq. �42�
with U→ Ũ��TLC� but with Wp exponentially depressed due
to the aforementioned reduction in the overlap between the
ground states of the nd=0 and nd=2 sectors. The bosons
couple to the low-energy sector of the impurity Fock space,
so they have the potential to significantly affect the renor-
malization of Wd and Wp upon further reduction in the tem-

perature. In particular, the � term in ĤLC, which favors lo-
calization of the impurity in a state of well-defined nd=0 or
2, directly competes with the Wp double-charge transfer term
that is responsible for the charge Kondo effect of the
negative-U Anderson model. This nontrivial competition
gives rise to the possibility of a QPT between qualitatively
distinct ground states of the charge-coupled BFA model.

Between these extremes, the system can enter a mixed-
valence regime of small effective on-site interaction. In this
regime, one must retain all the impurity degrees of freedom
of the charged-coupled BFA model. The impurity-band hy-
bridization competes with the e-b coupling for control of the
impurity, again suggesting the possibility of a QPT.

Each of the regimes discussed above features competition
between band-mediated tunneling within the manifold of im-
purity states and the localizing effect of the bosonic bath.
Although the tunneling is dominated by a different process in
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the three regimes, it always drives the system toward a non-
degenerate impurity ground state, whereas the e-b coupling
favors a doubly-degenerate �nd=0,2� impurity ground state.
In order to provide a unified picture of the three regimes �and
the regions of the parameter space that lie in between them�,
we will find it useful to interpret our NRG result in terms of
an overall tunneling rate ∆, which has a bare value

� � �J�
2 + 2�D/� + 16Wp

2. �50�

Here, Wp is assumed to be negligibly small in the local-
moment regime, and J� to be similarly negligible in the
local-charge regime. If ∆ renormalizes to large values while
the e-b coupling � scales to weak coupling, then one expects
to recover the strong-coupling physics of the Anderson
model. If, on the other hand, � becomes strong while ∆ be-
comes weak, the system should enter a low-energy regime in
which the bath governs the asymptotic low-energy long-time
impurity dynamics. Whether or not each of these scenarios is
realized in practice, and whether or not there are any other
possible ground states of the model, can be determined only
by more detailed study. These questions are answered by the
NRG results reported in the sections that follow.

IV. RESULTS: SYMMETRIC MODEL WITH SUB-OHMIC
DISSIPATION

This section presents results for Hamiltonian �1� with U
=−2�d	0 and with sub-Ohmic dissipation characterized by
an exponent 0�s�1. Figure 3 shows a schematic phase
diagram on the �-� plane at fixed U. There are two stable
phases: the localized phase, in which the impurity dynamics
are controlled by the coupling to the bosonic bath and the
system has a pair of ground states related to one another by a
particle-hole transformation, and the Kondo phase, in which
there is a nondegenerate ground state. These phases are sepa-
rated by a continuous QPT that takes place on the phase
boundary �solid line in Fig. 3�, which we parametrize as �

=�c���. Within the Kondo phase, the nature of the correla-
tions evolves continuously with increasing � �at fixed ��
from a pure spin-Kondo effect for � � 0 to a predominantly
charge-Kondo effect beyond a crossover �dashed line in Fig.
3� associated with the change in sign of Ueff defined in Eq.
�24�.

As s decreases, and the e-b coupling becomes increas-
ingly relevant—in a renormalization-group sense �see Eq.
�28��—the phase boundary moves to the left as the localized
phase grows at the expense of the Kondo phase, which dis-
appears entirely for s�0. As will be seen in Sec. V, the
phase diagram of the Ohmic �s=1� problem has the same
topology as Fig. 3, even though �as described in Sec. V� the
nature of the QPT is qualitatively different than for 0�s
�1. For s	1, the e-b coupling is irrelevant, and the system
is in the Kondo phase for all � 	 0.

The remainder of this section presents the evidence for
the preceding statements. We first discuss the
renormalization-group flows and fixed points. We then turn
to the behavior in the vicinity of the phase boundary, focus-
ing in particular on the critical response of the impurity
charge to a local electric potential. Following that, we
present results for the impurity spectral function and show
that the low-energy scale extracted from this spectral func-
tion supports the qualitative picture laid out in the paragraphs
above and summarized in Fig. 3.

A. NRG flows and fixed points

Figure 4 plots the schematic renormalization-group flows
of the couplings � entering Eq. �15� and ∆ defined in Eq.
�50� for a symmetric impurity �U=−2�d� coupled to a bath
described by an exponent 0�s�1. These flows are deduced
from the evolution of the many-body spectrum with increas-
ing iteration number N, i.e., with reduction in the effective

λ

Kondo

spin charge

localized

Γ

U

λc 0

Ueff eff( > 0) ( < 0)

FIG. 3. Schematic phase diagram of the symmetric charge-
coupled BFA model for bath exponents 0�s�1. The solid curve
marks the boundary between the Kondo phase, in which the impu-
rity degrees of freedom are screened by conduction electrons, and
the localized phase, in which the impurity dynamics are controlled
by the coupling to the dissipative bath. The dashed vertical line
represents a crossover from a regime in which Kondo screening
takes place primarily in the spin sector to a regime in which a
charge-Kondo effect is predominant.

0
L

∆

λ

K

C

LM
FO

λ c0

FIG. 4. Schematic renormalization-group flows on the �-∆ plane
for the symmetric charge-coupled BFA model with a bath exponent
0�s�1. Trajectories with arrows represent the flow of the cou-
plings � entering Eq. �15� and ∆ defined in Eq. �50� under decrease
of the high-energy cutoffs on the conduction band and the bosonic
bath. Between the basins of attraction of the Kondo fixed point �K�
and the localized fixed point �L� lies a separatrix, along which the
flow is away from the free-orbital fixed point �FO� located at �
=�c0, ∆�0 and toward the critical fixed point �C�. For ∆�0 only,
there is flow from FO toward the local-moment fixed point �LM� at
��0.
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band and bath cutoffs D̃=�̃�D�−N/2. A separatrix �dashed
line� forms the boundary between the basins of attraction of
a pair of stable fixed points, regions that correspond to the
two phases shown in Fig. 3. Figure 4 also shows three un-
stable fixed points. In contrast to the situation at other points
on the flow diagram, each of the fixed points exhibits a
many-body spectrum that can be interpreted as the direct
product of a set of bosonic excitations and a set of fermionic
excitations.

The Kondo fixed point corresponds in the
renormalization-group language of Fig. 4 to effective cou-
plings ��0 and ∆��. The many-body spectrum decomposes
into the direct product of �i� the excitations of a free bosonic
chain described by Eq. �13� alone, and �ii� the strong-
coupling excitations of the Kondo �or symmetric Anderson�
model, corresponding to free electrons with a Fermi-level
phase shift of � /2. This spectrum, which exhibits SU�2�
symmetry both in the spin and charge �isospin� sectors, is
identical to that found throughout the Kondo phase of the
particle-hole-symmetric Ising BFK Hamiltonian38,39 �a
model in which the bosons couple to the impurity’s spin
rather than its charge�.

The schematic RG flow diagram in Fig. 4 shows a local-
ized fixed point corresponding to ��� and ∆�0. However,

this is really a line of fixed points described by ĤLC �Eq.
�49�� with effective couplings ���, Wp=0, and 0�Wd��.
Since Wp=0, the impurity occupancy takes a fixed value nd
=0 or 2. �It is important to distinguish nd, used to character-
ize the fixed-point excitations, from the physical expectation
value of n̂d. The latter quantity is discussed in Sec. IV E 1.�

Each fixed point along the localized line has an excitation
spectrum that decomposes into the direct product of �i�
bosonic excitations identical to those at the localized fixed
point of the spin-boson model29 with the same bath exponent
s, and �ii� fermionic excitations described by a Hamiltonian

ĤL,f
NRG = Ĥband

NRG + Wd�nd − 1���
�

f0�
† f0� − 1� , �51�

which is just the discretized version of ĤCK �Eq. �41�� with
Wp=0 and the operator n̂d replaced by the parameter nd. The

low-lying many-body eigenstates of ĤL,f
NRG appear in degen-

erate pairs, one member of each pair corresponding to nd
=0 and the other to nd=2. The fixed-point coupling Wd in-
creases monotonically as the bare e-b coupling � decreases
from infinity and diverges on approach to the phase bound-
ary. As illustrated in Fig. 5, this divergence can be fitted to
the power-law form

Wd � �� − �c�−� for � → �c
+. �52�

For reasons that will be explained in Sec. IV E 1, the numeri-
cal value of � coincides, to within a small error, with that of
the order-parameter exponent � defined in Eq. �71�.

The free-orbital fixed point ��=�c0 ,�=0� is unstable
with respect to a bare ��0 or any deviation of � from �c0
	 lim�→0�c���. The local-moment fixed point ���∆�0�, at
which the impurity has a spin-1

2 degree of freedom decou-
pled from the band and from the bath, is reached only for
bare couplings ��0 �hence, ∆�0� and ���c0.

Of greatest interest is the unstable critical fixed point that
is reached for any bare couplings lying on the boundary �
=�c��� between the Kondo and localized phases. At this
fixed point, the low-lying spectrum can be constructed as the
direct product of �i� the critical spectrum of the spin-boson
model with the same bath exponent s, and �ii� the strong-
coupling spectrum of the Kondo �or symmetric Anderson�
model. This spectrum, which exhibits full SU�2� symmetry
in both the spin and isospin sectors, is identical to that at the
critical point of the Ising-anisotropic Bose-Fermi Kondo
model57 and is illustrated in Fig. 3�c� of Ref. 39.

The decomposition of the critical spectrum can be under-
stood by considering the flow of couplings entering the local-

charge Hamiltonian ĤLC defined in Eq. �49�. The fixed-point
value of the density-density coupling is Wd=� in the charge-
Kondo regime of the Kondo phase and diverges according to
Eq. �52� in the localized phase. It is therefore reasonable to
assume that in the vicinity of the phase boundary, Wd rapidly
renormalizes to strong coupling, locking the impurity site
and site n=0 of the fermionic chain into one of just two
states, which we can write in a pseudospin notation as �⇑ �
=d↑

†d↓
†�0� and �⇓ �= f0↑

† f0↓
† �0�, where |0� is the no-particle

vacuum. Hopping of electrons on or off site n=0 is forbid-

den, so the discretized form of ĤLC reduces to an effective
Hamiltonian

ĤLC
NRG�Wd = �� = ĤSC

NRG�0� + ĤSBM
NRG. �53�

Here, ĤSC
NRG�0� �Eq. �34�� acts only on fermionic chain sites

n�1 and yields the Kondo/Anderson strong-coupling exci-
tation spectrum, while
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FIG. 5. �Color online� Fixed-point coupling Wd entering Eq.
�51� vs e-b coupling �−�c in the localized phase near the phase
boundary at �=�c. Results are shown for U=−2�d=0.1, ��9, Ns

=500, Nb=8, four different values of the bath exponent s, and � �
0.5, 1.0, 10, and 50 for s=0.2, 0.4, 0.6, and 0.8, respectively �Ref.
56�. The power-law divergence of Wd as �→�c

+ �Eq. �52�� is re-
flected in the linear behaviors of data on a logarithmic scale. The
numerical values of the exponent � obtained here are identical �to
within small errors� to those listed in Table III.
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ĤSBM
NRG = Ĥbath

NRG + 2Wp�� ⇑ �� ⇓ � + � ⇓ �� ⇑ ��

+
�K0�

���s + 1�
�� ⇑ �� ⇑ � − � ⇓ �� ⇓ ���b0 + b0

†� �54�

acts on the remaining degrees of freedom in the problem in a
subspace of states all carrying quantum numbers S=Sz=Q

=0. ĤSBM
NRG is precisely the discretized form of the spin-boson

Hamiltonian with tunneling rate �=4Wp and dissipation
strength �=2�K0��2 /�. These two couplings compete with
one another, with three possible outcomes: �1� ∆ can scale to
infinity and � to zero, resulting in flow to the delocalized
fixed point �the Kondo fixed point of the charge-coupled
BFA model�; �2� � can scale to infinity and ∆ to zero, yield-
ing flow to the localized fixed point; or �3� both couplings
can renormalize to finite values �=�C, �=�C at the critical
point. This picture implies that the universal critical behavior
of the charge-coupled BFA model should be identical to that
of the spin-boson model, the conduction-band electrons serv-
ing only to dress the nd=0,2 impurity levels and to renor-
malize the impurity tunneling rate and the dissipation
strength.

Given that the NRG approach necessarily involves Fock-
space truncation, it is instructive to examine the dependence
of the fixed-point spectra on the parameters Ns and Nb de-
noting, respectively, the number of states retained from one
NRG iteration to the next and the maximum number of
bosons allowed per site of the bosonic chain. Figure 6 shows,
for representative bath exponents s=0.2 and s=0.8, that the
energy of the lowest bosonic excitation at �=�c converges
rapidly with increasing Ns and Nb. This behavior suggests
that for ��9, at least, Ns=500, and Nb=8 are sufficient for
studying the physics at the critical point.

By contrast, the lowest bosonic excitation energy for �
=1.1�c, plotted in Fig. 7, converges only slowly with respect
to Nb. This points to the failure of the truncated bosonic basis
deep inside the localized phase of the sub-Ohmic model,
where the mean boson number per site is expected to diverge

according to Eq. �27�. This interpretation is confirmed by
calculation of the expectation value of the total boson num-
ber,

B̂N = �
m

M�N�

bm
† bm, �55�

where M�N� denotes the highest labeled bosonic site present

at iteration N. Our results for �B̂20� vs Nb �not shown� are
very similar to those in Fig. 8 of Ref. 39, with convergence
by Nb=8 at the critical point, but no evidence of such con-
vergence for an e-b coupling 10% over the critical value.

Recently, Bulla et al. applied a “star” reformulation of the
NRG to the spin-boson model.29 While this approach pro-
vides a good description of the localized fixed point, it does
not correctly capture the physics of the delocalized phase
�corresponding to the Kondo phase of the present model� or
of the critical point that separates the two stable phases. For
this reason, we prefer to work with the “chain” formulation
summarized in Sec. II.

B. Critical coupling

Figure 8 plots the critical e-b coupling �c��� for fixed
U=−2�d and four different values of the bath exponent s. As
expected, with increasing �, the critical coupling increases
smoothly from �c��=0�	�c0, reflecting the fact that entry to
the localized phase requires an e-b coupling sufficiently large
not only to drive Ueff negative but also to overcome the
reduction in the electronic energy that derives from the hy-
bridization. We believe that the vertical slope of the s=0.2
phase boundary as it approaches the horizontal axis in Fig. 8
is an artifact stemming from the same source as the NRG
overestimate of �c0 for the same bath exponent. �See the
discussion of Fig. 2 in Sec. III A.�

In the sections that follow, we show that the critical prop-
erties of the charge-coupled BFA model map, under inter-
change of spin and charge degrees of freedom, onto those of
the spin-coupled BFA model studied �along with the corre-
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FIG. 6. Dependence of the energy of the first bosonic excitation
at the critical point ��=�c� on the NRG truncation parameters Nb

and Ns. Results are shown for U=−2�d=0.1, ��0.01, ��9, and
bath exponents s=0.2 and s=0.8. In the left panels, Ns=500, while
in the right panels Nb=8.
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FIG. 7. Dependence of the energy of the first bosonic excitation
in the localized phase ��=1.1�c� on the NRG truncation parameters
Nb and Ns. All other parameters are as in Fig. 6.
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sponding Ising BFK model� in Ref. 39. The spin-coupled
model is described by Eqs. �1�–�5� and �12�–�14�, with Eqs.
�6� and �15� replaced by

Ĥimp-bath =
1

2�Nq

�n̂d↑ − n̂d↓��
q

gq�aq + a−q
† � �56�

and

Ĥimp-bath
NRG =

�K0g

2���s + 1�
�n̂d↑ − n̂d↓��b0 + b0

†� . �57�

In light of the parallels between the universal critical behav-
ior of the two models, it is of interest to compare their criti-
cal couplings, making due allowance for the additional pref-
actor of 1

2 that enters Eqs. �56� and �57�.
Figure 9 plots the s dependence of �c and gc /2 for fixed

values of U=−2�d and �. For all 0�s�1, �c is found to
exceed gc /2. This fact can be understood by noting the con-
trasting role of the e-b coupling in the two models. In the
spin-coupled BFA model, increasing g from zero immedi-
ately begins to localize the impurity in a state of fixed Sz and
thereby to impede the spin-flip processes that are central to
the Kondo effect. In the charge-coupled model, by contrast,

increasing � from zero initially acts to decrease the effective
Coulomb repulsion and hence to enhance charge fluctuations
on the impurity site; only for �c��c0 do further increases in
the e-b coupling serve to localize the impurity in a state of
fixed charge, eventually leading to the suppression of the
charge Kondo effect at �=�c.

C. Crossover scale

Under the renormalization-group flows sketched in Fig. 4,
the system passes, with decreasing energy cutoff or decreas-
ing temperature, between the regions of influence of different
renormalization-group fixed points. For bare parameters that
place the system near the boundary between the Kondo and
localized phases, the free-orbital fixed point typically gov-
erns the behavior at temperatures much greater than the
Kondo temperature TK of the Anderson model obtained by
setting � � 0 in Eq. �1�. For temperatures between of order
TK and a crossover scale T*, the system exhibits quantum
critical behavior controlled by thermal fluctuations about the
unstable critical point. Finally, the physics in the regime T
�T* is governed by one or other of the two stable fixed
points: Kondo or localized.

For fixed values of all other parameters, one expects T* to
vanish as the e-b coupling approaches its critical value ac-
cording to a power law,

T* � �� − �c� for � → �c, �58�

where  is the correlation-length exponent.4 The crossover
scale can be determined directly from the NRG solution via
the condition T*��−N

*
/2, where N* is the number of the

iteration at which the many-body energy levels cross over to
those of a stable fixed point. There is some arbitrariness as to
what precisely constitutes crossover of the levels. Different
criteria will produce T*��� values that differ from one an-
other by a �-independent multiplicative factor. It is of little
importance what definition of N* one uses, provided that it is
applied consistently.

Figure 10 shows typical dependences of T* on �c−� in
the Kondo phase. Equation �58� holds very well over several
decades, as demonstrated by the linear behavior of the data
on a log-log plot. We find that the numerical values of  �s�,
some of which are listed in Table II, are identical �within
small errors�, to those of the spin-boson and Ising BFK mod-
els for the same bath exponent s. This supports the notion
that the critical point of the charge-coupled BFA model be-
longs to the same universality class as the critical points of
the spin-boson and Ising BFK models. However, to confirm
this equivalence, we must compare other critical exponents,
as reported below.

D. Thermodynamic susceptibilities

In this section, we consider the response of the charge-
coupled BFA model to a global magnetic field H and to a
global electric potential !. These external probes enter the
Hamiltonian through an additional term
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FIG. 8. �Color online� Critical coupling �c vs hybridization
width � for U=−2�d=0.1, ��9, Ns=500, Nb=8, and the bath ex-
ponents s listed in the legend.
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the spin-coupled BFA model �Ref. 39�. Results are shown for U=
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Ĥext = HSz + !Q , �59�

where Sz and Q are defined in Eqs. �16� and �18�, respec-
tively. In particular, we focus on the static impurity spin
susceptibility "s,imp=−�2Fimp /�H2 and the static impurity
charge susceptibility "c,imp=�2Fimp /�!2. Here, Fimp=��F�,
where ��X� is the difference between �i� the value of the
bulk property X when the impurity is present and �ii� the
value of X when the impurity is removed from the system. It
is straightforward to show that

T"s,imp = ����Ŝz
2�� − ��Ŝz��2� , �60�

T"c,imp = ����Q̂2�� − ��Q̂��2� , �61�

where, for any operator Â,

��Â�� =
Tr Â exp�− Ĥ/T�

Tr exp�− Ĥ/T�
. �62�

Note that with the above definitions, limT→� T"s,imp= 1
8 but

limT→� T"c,imp= 1
2 , a factor of four difference that must be

taken into account when comparing the two susceptibilities.
Since each T"imp is calculated as the difference of bulk quan-
tities, its evaluation using the NRG method is complicated
by significant discretization and truncation errors. In order to
obtain reasonably well-converged results for T"imp, we retain
Ns=2000 states after each NRG iteration. However, even this

number is insufficient to allow reliable extraction of "imp
	�T"imp� /T as T→0.

Figure 11 plots NRG results for T"s,imp�T� and
1
4T"c,imp�T�, calculated for bath exponent s=0.8 and different
values of the e-b coupling �. For ���c0 �see Sec. III A�,
both impurity susceptibilities behave very much as they do in
the Anderson model: with decreasing temperature, T"c,imp
quickly falls toward zero, signaling quenching of charge
fluctuations upon entry into the local-moment regime,
whereas T"s,imp initially rises toward its local-moment value
of 1

4 , before dropping to zero for T�T* on approach to the
Kondo fixed point. With increasing �, the charge response
grows and the spin response is suppressed. The two suscep-
tibilities are approximately equivalent for �=�c0, where the
effective Coulomb interaction Ueff=0. For still stronger e-b
couplings, T"s,imp plunges rapidly as the temperature is de-
creased, whereas T"c,imp first rises on entry to the local-
charge regime before dropping to satisfy

lim
T→0

T"c,imp�T� = 0 for � � �c. �63�

These trends are very similar to those exhibited10 by the
Anderson-Holstein model. In that model, however, the drop
in T"c,imp�T� takes place8 for strong e-b couplings �0

���0U /2 around an effective Kondo temperature TK
eff


D exp�−��0
4 /��0

3�. In the charge-coupled BFA model, by
contrast, neither the spin susceptibility nor the charge sus-
ceptibility exhibits any obvious feature that correlates with
the vanishing of T* as �→�c

−. This can be understood by
noting that the impurity susceptibilities are determined
purely by the fermionic part of the excitation spectrum,
whose asymptotic low-energy form is the same at the critical
fixed point �which governs the behavior in the quantum criti-

TABLE II. Correlation-length critical exponent  vs bath expo-
nent s for the charge-coupled Bose-Fermi Anderson model �CC-
BFA, this work� and for the Ising-anisotropic Bose-Fermi Kondo
model �BFK, from Refs. 38 and 39�. Parentheses surround the es-
timated nonsystematic error in the last digit.

s 0.2 0.4 0.6 0.8

 �CC-BFA� 4.99�3� 2.52�2� 1.97�4� 2.12�6�
 �BFK� 4.99�5� 2.50�1� 1.98�3� 2.11�2�
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FIG. 10. �Color online� Crossover scale T* vs �c−� on the
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FIG. 11. �Color online� Temperature dependence of the impurity
contribution to the static spin �left� and charge �right� susceptibili-
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cal regime T*�T�TK� as at the Kondo fixed point �which
controls the regime T�T*�.

The behavior of the static impurity spin susceptibility is
qualitatively unchanged upon crossing from the Kondo phase
to the localized phase. However, for �	�c, T"c,imp ap-
proaches at low temperatures a nonzero value that can be

inferred from the effective Hamiltonian ĤL,f
NRG �Eq. �51��.

Electrons near the Fermi level experience an s-wave phase
shift,


�� = 0� = 

0 for nd = 0

� − 
0 for nd = 2,
� �64�

where nd labels the two disconnected sectors of ĤL,f
NRG, and


0 = arctan���̄0Wd�, 0 � 
0 � �/2, �65�

with �̄0 being the effective conduction-band density of states
defined in Eq. �30�. It is then straightforward to show that

lim
T→0

T"c,imp�T� = �1 − 2
0/��2. �66�

Equations �52�, �65�, and �66� together imply that

lim
T→0

T"c,imp�T� � �� − �c�2� for � → �c
+. �67�

As this example illustrates, the thermodynamic suscepti-
bilities contain signatures of an evolution from a spin-Kondo
effect to a charge-Kondo effect. Furthermore, Eqs. �63� and
�67� suggest that "c,imp may serve as the order-parameter
susceptibility for the QPT. However, neither susceptibility
manifests the vanishing of the crossover scale T* on ap-
proach to the transition from the Kondo side. Moreover, the
conservation of Q prevents "c,imp from acquiring an anoma-
lous temperature dependence in the quantum-critical
regime.58 Thus, one is led to conclude that the response to a
global electric potential ! does not provide access to the
critical fluctuations near the QPT.

E. Local charge response

Given the nature of the coupling in Hamiltonian �1� be-
tween the impurity and the bosonic bath, we expect to be
able to probe the quantum critical point through the system’s
response to a local electric potential # that acts solely on the
impurity charge, entering the Hamiltonian via an additional
term

Ĥc,loc = #�n̂d − 1� . �68�

A nonzero # is equivalent to a shift in 
d entering Eq. �9�
away from its bare value �d+U /2=0.

In this section we show that for sub-Ohmic bath expo-
nents 0�s�1, �i� the response to a static # is described by
critical exponents that satisfy hyperscaling relations charac-
teristic of an interacting quantum critical point, �ii� numerical
values of these critical exponents are identical to those of the
spin-boson and Ising BFK models, and �iii� the dynamical
response is consistent with the presence of � /T scaling in the
vicinity of the quantum critical point.

1. Static local charge response

The response to imposition of a static local potential # is
measured by the thermodynamic average value of the impu-
rity charge,

Qloc = ��n̂d − 1�� , �69�

and through the static local charge susceptibility

"c,loc�T;� = 0� = − � �Qloc

�#
�

#=0
= − lim

#→0

Qloc

#
. �70�

In NRG calculations of lim#→0 Qloc�#� and "c,loc, we use
potentials in the range 10−13� �#��10−10.

As illustrated in Fig. 12, the “spontaneous impurity
charge” lim#→0 Qloc�� ,# ;T=0� indeed serves as an order
parameter for the QPT between the Kondo and localized
phases. This quantity vanishes for all ���c and is nonzero
for �	�c, its onset being described by the power law

lim
#→0

Qloc��,#;T = 0� � �� − �c�� for � → �c
+. �71�

In the localized phase, the presence of an infinitesimal local
potential restricts the effective Hamiltonian �51� to just one
nd sector: nd=0 for # 	 0 or nd=2 for # � 0. Then substi-
tuting Eq. �64� into the Friedel sum rule �n̂d�0=2
�0� /�
yields

lim
#→0

Qloc�#;T = 0� = −
2 sgn #

�
arccot���̄0Wd� . �72�

The latter relation explains the equality of the exponents �
entering Eqs. �52� and �71�. It should also be noted that Eqs.
�65�, �66�, and �72� together imply that

lim
#→0

Qloc
2 �#;T = 0� = lim

T→0
T"c,imp�T� . �73�

At the critical point, the response to a small-but-finite
potential # obeys another power law,
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Qloc�#;� = �c,T = 0� � �#�1/
. �74�

This behavior is exemplified in Fig. 13 for four different
values of s.

Figure 14 shows a logarithmic plot of the static local
charge susceptibility "c,loc�T ;�=0� vs temperature T for bath
exponent s=0.4 and a number of e-b couplings straddling �c.
In the quantum-critical regime, the susceptibility has the
anomalous temperature dependence

"c,loc�T;� = 0� � T −x for T* � T � TK, �75�

characterized by a critical exponent x. For T�T*���, the
temperature variation approaches that of one or other of the
stable fixed points. In the Kondo phase, the susceptibility is
essentially temperature independent, signaling complete
quenching of the impurity, and the zero-temperature value
diverges on approach to the critical coupling as

"c,loc��;� = T = 0� � ��c − ��−$ for � → �c
−. �76�

In the localized phase, by contrast,

"c,loc�T,�;� = 0� = lim
#→0

Qloc
2 ��,#;T = 0�

T

for � 	 �c and T � T*, �77�

indicative of a residual impurity degree of freedom. Precisely
at the critical e-b coupling, Eq. �75� is obeyed all the way
down to T=0.

Table III lists the numerical values of the critical expo-
nents �, 1/
, x, and $, for four different sub-Ohmic bath
exponents s. For each s, these critical exponents are identical
within estimated error to those of the spin-boson and Ising
BFK models. In all cases, we find that x=s to within our
estimated nonsystematic numerical error. We also note that
for s�

1
2 , the value of $ lies close to its mean-field value of

1. It is conceivable that the deviations of $ from 1 are arti-
facts of the NRG discretization and truncation approxima-
tions.

The exponents in Table III obey the hyperscaling relations


 =
1 + x

1 − x
, 2� =  �1 − x�, $ =  x , �78�

which are consistent with the ansatz

F = Tf� �� − �c�
T1/ ,

�#�
T�1+x�/2� �79�

for the nonanalytic part of the free energy. Such hyperscaling
suggests that the quantum critical point is an interacting
one.4

2. Dynamical local charge susceptibility

The dynamical local charge susceptibility is

"c,loc��,T� = i�
0

�

dt e−i�t���n̂d�t� − 1, n̂d�0� − 1��� . �80�

Its imaginary part "c,loc� can be calculated within the NRG as

"c,loc� ��,T� =
�

Z�T� �
m,m�

��m��n̂d − 1�m��2�e−Em�/T − e−Em/T �

%
�� − Em� + Em� . �81�

Here, �m� is a many-body eigenstate with energy Em, and
Z�T�=�me−Em/T is the partition function. Equation �81� pro-

TABLE III. Static critical exponents �, 1/
, x, and $ defined in
Eqs. �71� and �74�–�76�, respectively, for four different values of the
bosonic bath exponent s. Parentheses surround the estimated non-
systematic error in the last digit.

s � 1/
 x $

0.2 2.0005�3� 0.6673�1� 0.1997�2� 0.997�4�
0.4 0.7568�2� 0.4283�2� 0.4002�4� 1.0117�6�
0.6 0.3923�1� 0.2501�7� 0.600�2� 1.1805�5�
0.8 0.2130�1� 0.1111�1� 0.800�2� 1.703�3�

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

|φ|

10
−8

10
−6

10
−4

10
−2

10
0

Q
lo

c(φ
;λ

=
λ c

,T
=

0)

s = 0.2

s = 0.4

s = 0.6

s = 0.8

FIG. 13. �Color online� Impurity charge Qloc�# ;�=�c ,T=0� vs
local electric potential |#| for four different values of the bath ex-
ponent s. All other parameters are as in Fig. 5. The dashed lines
represent fits to the form of Eq. �74�.

10
−15

10
−10

10
−5

10
0

T

10
0

10
2

10
4

10
6

10
8

10
10

χ c,
lo

c(T
;ω

=
0)

λ = 0.5
λ = 1.0
λ = 1.028
λ = 1.02905
λ = 1.04
λ = 5.0

0 0.5 1
00.51

s = 0.4

FIG. 14. �Color online� Static local charge susceptibility
"c,loc�T ;�=0� vs temperature T for s=0.4, U=−2�d=0.1, ��1.0
�see footnote 56�, ��9, Ns=500, Nb=8, and for different values of
the e-b coupling � straddling the critical value �c�1.029 05.

QUANTUM PHASE TRANSITIONS IN A CHARGE-COUPLED… PHYSICAL REVIEW B 80, 165113 �2009�

165113-15



duces a discrete set of delta-function peaks that must be
broadened to recover a continuous spectrum. Following stan-
dard procedure,59 we employ Gaussian broadening of delta
functions on a logarithmic scale,


���� − ��E�� →
e−b2/4

��b��E�
exp�−

�ln��� − ln��E��2

b2 � ,

�82�

with the choice of the broadening width b=0.5 ln �.
�a� Zero temperature. Figure 15 plots "c,loc� �� ;T=0� vs �

for bath exponent s=0.2 and a series of e-b couplings �
��c. Whereas "c,loc� �� ;�=0,T=0��� for ����TK �the
usual Kondo result�, we find that "c,loc� �� ;0����c ,T=0�
� ���s sgn��� as � → 0, corresponding to a long-time relax-
ation behavior "c,loc�t�� t−�1+s�. Precisely at the critical e-b
coupling,

"c,loc� ��;� = �c,T = 0� � ���−y sgn��� for � � TK.

�83�

Figure 16 shows "c,loc� �� ;�=�c ,T=0� vs � and "c,loc�T ;�
=�c ,�=0� vs T for representative bosonic bath exponents
s=0.2 and s=0.8. These and all other data that we have
obtained are consistent with the relation

x = y = s for 0 � s � 1. �84�

For small deviations from the critical coupling,
"c,loc� �� ;T=0� exhibits the critical behavior of Eq. �83� over
the range T*� ����TK, where T* is identical �up to a con-
stant multiplicative factor� to the crossover scale defined in
Sec. IV C that vanishes at the quantum critical point accord-
ing to Eq. �58�.

�b� Finite temperatures. Equation �84� is consistent with
the presence of � /T scaling in the dynamical local charge
susceptibility at the quantum critical point, viz,

"c,loc� ��,T;� = �c� = T −s&s��/T� . �85�

Figure 17 shows the collapse of data for "c,loc� �� ,T ;�=�c�
onto a single function of � /T within the critical regime. The
Kondo temperature TK of the Anderson model obtained by
setting � � 0 serves as a nonuniversal high-frequency cutoff
on the critical behavior; the curves have a common form for
� /T�TK /T. It should be noted that the NRG method is
unreliable52,60 for ����T, preventing demonstration of com-
plete � /T scaling.

Both the hyperscaling of the static critical exponents and
what seems to be � /T scaling of the dynamical susceptibility
are consistent with the QPT between the Kondo and local-
ized phases taking place at an interacting critical point below
its upper critical dimension.

F. Impurity spectral function

We now turn to discussion of the impurity spectral func-
tion A��� ,T�=−�−1 Im Gd��� ,T�, where the retarded impu-
rity Green’s function is
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Gd���,T� = − i�
0

�

dt ei�t���d��t�,d�
†�0��+�� . �86�

The spectral function can be calculated within the NRG us-
ing the formulation

A���,T� =
1

Z�T� �
m,m�

��m��d�
† �m��2�e−Em�/T + e−Em/T �

%
�� − Em� + Em� , �87�

where the notation is the same as in Eq. �81�. To recover a
continuous spectrum, we have again applied Eq. �82� to the
delta-function output of Eq. �87�, choosing the broadening
factor b=0.55 ln � that best satisfies the Fermi-liquid result
A���=0,T=0�=1 /�� for the Anderson model. In order to
achieve satisfactory results, we find it necessary to work with
a smaller discretization parameter ���3 instead of the value
��9 employed for all the quantities reported above� and to
retain more states �Ns=1200 rather than the 500 that typi-
cally suffices�. Since the spectral functions shown below are
all spin independent, we henceforth drop the index � on A�.
For the particle-hole-symmetric model considered in this
section, the spectral function is symmetric about ��0.

Figure 18 plots A��� ;T=0� vs � for s=0.8 and a series of
� values. For ��0, we recover the spectral function of the
Anderson model, featuring a narrow Kondo resonance cen-
tered at zero frequency and broad Hubbard satellite bands
centered around �= �

1
2U. Increasing the e-b coupling from

zero has two initial effects—a displacement of the Hubbard
bands to smaller frequencies, and a broadening of the low-
energy Kondo resonance—that can both be attributed to the
boson-induced renormalization of the Coulomb interaction
described in Eq. �46�.

We expect the Hubbard peak locations to obey �H

� �
1
2Ueff for 0����c0. However, the peak locations plot-

ted in Fig. 19�a� are better fitted by ��H�=0.4U−�2 / ��s�,
which �given the discretization and truncation effects dis-
cussed in Sec. III A� appears to represent a stronger bosonic

renormalization than that predicted by ��H�= 1
2Ueff. We be-

lieve that this discrepancy arises primarily from the rapid
broadening of the Kondo resonance with increasing �, which
shifts the local maximum of the combined spectral function
�the sum of the Kondo resonance plus Hubbard satellite
bands� to a frequency smaller in magnitude than the central
frequency of the Hubbard peak by itself.

The width 2�K of the Kondo resonance, plotted in Fig.
19�b�, proves to be equal �up to a multiplicative constant� to
the crossover scale T* defined in Sec. IV C. For ���c0, the
variation in both scales is well described by the replacement
of U in the expression20 for the Kondo temperature of the

symmetric Anderson model by ŨNRG�U /2� �given by Eq.
�48��, the effective Coulomb interaction on entry to the local-
moment regime. The dashed line in Fig. 19�b� shows that the
resulting formula,

�K = CK�8ŨNRG�

�A�

exp�−
�A�ŨNRG

8�
� , �88�

where A� is defined in Eq. �31�, provides an excellent de-
scription of �K over almost the entire range 0����c0
�0.369. This echoes the finding in the Anderson-Holstein
model that a weak e-b coupling serves primarily to reduce
the impurity on-site repulsion, leading to an increase in the
Kondo scale.8

Once the e-b coupling exceeds �c0, further increase in �
leads to suppression of the Hubbard peaks �e.g., see the
curves for ��0.4 and ��0.43 in Fig. 18� and to a rapid
narrowing of the Kondo resonance �see Fig. 19�b��. In the
Anderson-Holstein model, the Kondo scale remains
nonzero—although exponentially reduced—for arbitrarily
large e-b couplings.8 In the charge-coupled BFA model, by
contrast, the Kondo peak collapses and �K extrapolates to
zero as � approaches its critical value �c. As shown in
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Fig. 20, the central peak remains pinned to the Fermi-liquid
result A��=0,T=0�=1 /�� even as the peak width vanishes
for �→�c

−.
In the localized phase ��	�c�, there is no vestige of the

Kondo resonance, but high-energy Hubbard-like peaks reap-
pear; see the curves for ��0.5 and ��0.6 in Fig. 18. In
addition, there is a pair of low-energy peaks centered at �
� �T*, as shown in Fig. 20.

G. Spin-Kondo to charge-Kondo crossover

Based on the analysis of the zero-hybridization limit pre-
sented in Sec. III A, one expects spin fluctuations to domi-
nate the impurity behavior in the region ���c0, but charge
fluctuations to be dominant for �c0����c. This picture is
supported by the behaviors of the thermodynamic suscepti-
bilities discussed in Sec. IV D. The evolution from a spin-
Kondo effect to a charge-Kondo effect can also be probed by
comparing the static local charge susceptibility �Eq. �70��
with its spin counterpart

"s,loc�T;� = 0� = − lim
h→0

��n̂d↑ − n̂d↓��
2h

, �89�

where h is a local magnetic field that enters an additional
Hamiltonian term

Ĥs,loc =
h

2
�n̂d↑ − n̂d↓� . �90�

In particular, characteristic energy scales for the spin and
charge Kondo effects are expected to be 1 /"s,loc��=0,T
=0� and 4 /"c,loc��=0,T=0�, respectively �where the factor
of 4 accounts for the difference in conventions that # couples
to n̂d−1, whereas h couples to �n̂d↑− n̂d↓� /2�. Figure 21 plots
the � dependence of these quantities for the parameter set
illustrated in Figs. 18 and 19. The Kondo resonance width
2�K crosses over from paralleling 1 /"s,loc�0,0� for small � to

loosely tracking61 4 /"c,loc�0,0� as � approaches �c. In the
intermediate region near �=�c0, 2�K is much smaller than
either inverse static susceptibility, indicating that the Kondo
effect has mixed spin and charge character.

Figure 22 presents a �-� phase diagram for s=0.8 and
fixed U=−2�d, showing data points along the phase bound-
ary �=�c��� and along the crossover boundary �=�X���,
defined as the e-b coupling at which the Kondo resonance
width 2�K is maximal for the given �. The fact that the latter
line rises almost vertically from �=�c0 at ��0 provides fur-
ther confirmation of the picture of a crossover from a spin-
Kondo effect to a charge-Kondo effect resulting from the
change in the sign of Ueff and establishes the validity of the
schematic phase diagram �Fig. 3� presented in the introduc-
tion to this section.

V. RESULTS: SYMMETRIC MODEL WITH OHMIC
DISSIPATION

This section presents results for Hamiltonian �1� with U
=−2�d	0 and an Ohmic bath �i.e., s=1�. We first discuss the
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��0.01, ��3, Ns=1600, Nb=8, and different e-b couplings �
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behavior of the static local charge susceptibility. We show
that, in contrast with the sub-Ohmic case 0�s�1, the cross-
over scale vanishes in exponential �rather than power-law�
fashion as the e-b coupling approaches its critical value from
below, and there is no small energy scale observed on the
localized side of the transition. Therefore, the QPT for the
Ohmic case is of Kosterlitz-Thouless type. At the end of the
section, we study the effects of the e-b coupling on the im-
purity spectral function.

A. Fixed points and thermodynamic susceptibilities

Figure 23 plots the schematic renormalization-group
flows for a symmetric impurity coupled to an Ohmic bath.
The flows within the Kondo basin of attraction are qualita-
tively very similar to those for the sub-Ohmic case depicted
in Fig. 4. In the localized regime, however, the e-b coupling
flows not to ��� but rather to a finite limiting value that
varies continuously with the bare values of � and �. What is
shown as a line of fixed points in Fig. 23 is really a plane of

fixed points described by ĤLC �Eq. �49�� with effective cou-
plings �	�c0, Wp=0, and 0�Wd��. Another important
departure from the sub-Ohmic case is that for s=1 there is no
longer a distinct critical point reached by flow along the
separatrix from the free-orbital fixed point; rather these two
fixed points merge as s→1−, leaving a critical endpoint at
�=�c0, ∆�0. Strictly, this is a line of critical endpoints de-

scribed by ĤLC �Eq. �49�� with effective couplings �=�c0,
Wp=0, and 0�Wd��. For a fixed bare value of �, the end-
point value of Wd is just the limit of the localized fixed-point
value of Wd as the bare coupling � approaches the phase
boundary �c���.

The behaviors of the static impurity spin and charge sus-
ceptibilities are qualitatively very similar to those for a sub-
Ohmic bath, as discussed in Sec. IV D. The only significant

difference is that for s=1, limT→0 T"c,imp�T� undergoes a dis-
continuous jump from its value of 0 for ���c to a nonzero
value for �=�c

+. This jump can be understood through Eqs.
�65� and �66� as a consequence of the fact that Wd does not
diverge on approach to the critical coupling.

B. Static local charge susceptibility and crossover scale

Figure 24 is a logarithmic plot of the static local charge
susceptibility "c,loc�T ;�=0� vs temperature T for different
e-b couplings �. On the Kondo side of the phase boundary,
"c,loc�T ;�=0� is proportional to 1 /T at high temperatures but
levels off for T�T*. We find it convenient to define

T* = 4/"c,loc�� = T = 0� for � → �c
−, �91�

thereby removing the ambiguity in the definition of the
crossover iteration N* �see Sec. IV C� on the Kondo side of
the s=1 quantum phase transition.

For �→�c
−, the crossover scale vanishes according to �see

Fig. 25�

T* � exp�−
C*

�1 − ��/�c�2
� . �92�

In the localized phase, "c,loc�T ;�=0� satisfies Eq. �77�
over the entire temperature range T�U. Since the critical
and localized fixed points share the same temperature varia-
tion, no crossover scale can be identified on the localized
side of the phase boundary. Moreover, the order parameter
lim#→0 Qloc�# ;T=0� does not vanish continuously as �
→�c

+ but rather undergoes a discontinuous jump at the tran-
sition, as shown in Fig. 25. The magnitude of this jump is
nonuniversal, being related via Eq. �72� to the value of Wd at
the critical endpoint.
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FIG. 23. Schematic renormalization-group flows on the �-∆
plane for the symmetric model with bath exponent s=1. Trajecto-
ries represent the flow of the couplings � entering Eq. �15� and ∆
defined in Eq. �50� under decrease in the high-energy cutoffs on the
conduction band and the bosonic bath. A separatrix �dashed line�
forms the boundary between the basins of attraction of the Kondo
fixed point �K� and a line of localized fixed points �L�. Flow along
the separatrix is toward the free-orbital fixed point �FO� located at
�=�c0. For ∆�0 only, there is flow away from FO toward the
local-moment fixed point �LM� at ��0.
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The properties described above are analogous to those of
the Kondo model �Eq. �39�� at the transition between the
Kondo-screened phase �reached for J��0 and Jz	−�J���
and the local-moment phase �reached for Jz�−�J���. Such
behaviors are characteristic of a Kosterlitz-Thouless type of
QPT.

C. Impurity spectral function

Figure 26 shows the impurity spectral function A�� ;T
=0� for an Ohmic bath. The behavior in the Kondo phase is
similar to that in the sub-Ohmic case discussed in Sec. IV F.
As the e-b coupling � increases from zero, the Hubbard sat-
ellite bands are initially displaced to smaller frequencies ac-
cording to �H� �

1
2Ueff �Fig. 27�a��, while the width 2�K of

the Kondo resonance �Fig. 27�b�� first rises before falling
sharply on approach to �=�c. Just as for 0�s�1, the varia-
tion in �K for ���c0 is well described by Eq. �88� with

ŨNRG �Eq. �48�� evaluated at E=U /2. Throughout the Kondo

phase, A��=T=0� remains pinned at its Fermi-liquid value
1 /��.

For ���c, however, the behavior of the spectral function
is quite different for s=1 than for 0�s�1. In the sub-Ohmic
case, the Kondo-phase pinning extends to the quantum criti-
cal point, i.e., ��A��=T=0,�=�c�=1, while in the local-
ized phase peaks appear at �� �T*. Figure 28 shows that
the Ohmic spectral function instead satisfies ��A��=T
=0,�=�c��1 and exhibits no feature in the localized phase
at energy scales much smaller than 1

2 �Ueff�.

VI. RESULTS: ASYMMETRIC MODEL

Sections IV and V focused exclusively on results for a
symmetric impurity satisfying �d=−U /2 in Eq. �2� or,
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ceptibility "c,loc��=T=0� in the Kondo phase ���c�0.726 and of
the order parameter lim#→0 Qloc�# ;T=0� in the localized phase �
	�c for s=1, U=−2�d=0.1, ��0.01, ��9, Ns=800, and Nb=12.
The dotted line shows a fit of the susceptibility data using Eqs. �91�
and �92�.

−0.04 0 0.04 0.08 0.12 0.16

ω

0

10

20

30

A
(ω

;T
=

0)

λ = 0
λ = 0.2
λ = 0.4
λ = 0.5
λ = 0.6
λ = 0.68
λ = 0.74

s = 1

FIG. 26. �Color online� Impurity spectral function A�� ;T=0� vs
� for s=1, U=−2�d=0.1, ��0.01, ��3, Ns=1200, Nb=12, and
different values of the e-b coupling �. For these parameters, Ueff

�Eq. �33�� changes sign at �c0�0.413 and the critical coupling is
�c�0.669.
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equivalently, 
d=0 in Eq. �9�. We now turn to the general
situation of an asymmetric impurity, starting with the sub-
Ohmic case 0�s�1.

For 
d�0 and small, nonzero values of �, one expects the
fermionic sector of the charge-coupled BFA model to behave
in essentially the same manner as in the asymmetric Ander-
son model �reviewed in Sec. III B�, with the exception that
the effective value of the Coulomb interaction U will be
reduced by the coupling to the bosonic bath. At temperatures
well below TK, there will be no further renormalization of
the electronic degrees of freedom, the system will exhibit

quasiparticle excitations described by ĤSC
NRG in Eq. �34�, and

the low-energy many-body states will share a nonvanishing
expectation value �n̂d−1��=Qloc�T=0��. The bosons will
couple to this impurity charge, yielding low-energy states
described most naturally in terms of displaced-oscillator
states �cf. Eq. �21�� annihilated by operators

āq = aq +
�q

�Nq�q

�n̂d − 1� . �93�

For s�1, the e-b coupling is relevant so � will scale to
strong coupling below a crossover temperature TL�TK.

For 
d�0 and very large values of �, one instead expects
the bosons to localize the impurity at a high temperature
scale TL into a state with �n̂d��0 �for 
d	0� or �n̂d��2 �for

d�0�. For T�TL, the impurity degrees of freedom will be
frozen, the bosonic spectrum will rapidly approach strong
coupling, and the conduction electrons will have an excita-

tion spectrum corresponding to ĤFI
NRG in Eq. �35� with a

small value of �V0�.
Given the equivalence of ĤSC

NRG and ĤFI
NRG, it seems likely

that the low-energy behavior of the asymmetric model will
be the same in the small-� and large-� limits. This suggests
that as the e-b coupling is increased from �=0+ to � → �,
the many-body eigenstates evolve adiabatically without the
occurrence of an intervening QPT.

For s=1, the e-b coupling is marginal, rather than rel-
evant. One again expects a continuous evolution of the low-
energy NRG spectrum with the bare value of �. However, in
this Ohmic case, the bosonic excitations should correspond
to noninteracting displaced oscillators rather than the �trun-
cated� strong-coupling spectrum found for 0�s�1.

The preceding arguments are supported by our NRG re-
sults. Here, we illustrate just the case s=0.4. Figure 29
shows the variation with � of the ground-state expectation
value �1− n̂d�0 for several values of 
d. In the symmetric case
�the 
d=0 curve in Fig. 29�, the impurity charge vanishes
throughout the Kondo phase, and grows in power-law fash-
ion on entry to the localized phase. Away from particle-hole
symmetry, by contrast, �1− n̂d�0 increases smoothly from its
Anderson-model value at � � 0 to approach 1 as � → �.

For all nonzero values of 
d, �, and �, the low-energy
spectrum can be decomposed into the direct product of

the fermionic spectrum corresponding to ĤSC
NRG�V1� �or

ĤFI
NRG�V0�� and the same localized-phase bosonic spectrum as

found for the symmetric model. The potential scattering V1
�or V0� is tied to �n̂d−1�0 by Eq. �37�, just as in the Anderson
model.

For small �, the value of �n̂d−1�0 can be related to the
corresponding quantity in the Anderson model by making
use of the effective Coulomb interaction introduced in Sec.
III A. In the asymmetric Anderson model, the ground-state
charge becomes frozen once the system passes out of its
mixed-valence regime, i.e., somewhat below a characteristic
temperature Tf defined20 for ��−�d�U as the solution of

Tf = ��d� −
�

�
ln

U

Tf
. �94�

In the charge-coupled BFA model, U and �d in Eq. �94�
should presumably be replaced by Ũ�Tf� and 
d− 1

2Ũ�Tf�,
respectively. However, it suffices for our purposes to note
that Tf can be expected to be of the same order as, but some-
what smaller than, ��d�. It is then reasonable to hypothesize
that �nd−1�0 in the asymmetric charge-coupled BFA model
should be close to the ground-state impurity charge of the
Anderson model with the same � and 
d but with U replaced

by Ũ�E� �Eq. �47�� evaluated at E�Tf. Our numerical results
support this conjecture. For example, Fig. 29 shows that
close to particle-hole symmetry ��d=−U /2�, the Anderson-

model charge calculated for ŨNRG�E� �Eq. �48�� with E
=0.3U �solid lines� reproduces quite well the value of �n̂d
−1�0 �symbols� over quite a broad range of e-b couplings
0���

2
3�c, where �c�0.298 35 is the critical coupling of

the symmetric problem.
In the small-� limit, one can also estimate the boson-

localization temperature TL by considering the evolution
with decreasing T of the effective value of ��n̂d−1�0. The
impurity charge does not renormalize, while to lowest order
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sults for five values of the impurity asymmetry 
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d�0 represent the impurity
charge calculated by solving the Anderson model �Eq. �11�� for the
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the effective e-b coupling obeys45 Eq. �28�. Defining TL by

the condition �̃�TL���n̂d−1�0�=CL, we find

TL � �C L
−1��n̂d − 1�0�2/�1−s�. �95�

In Fig. 30, symbols represent TL values extracted from the
crossover of bosonic excitations in the NRG spectrum, while
solid lines show the results of evaluating Eq. �95� using CL
=3 and the �n̂d−1�0 values shown in Fig. 29. The algebraic
relation between the numerical values of TL and �1− n̂d�0 is
well obeyed over a range of e-b couplings that extends be-
yond �c of the symmetric problem.

Figure 31 plots the static local charge susceptibility
calculated for s=0.4 at the critical e-b coupling of the sym-
metric model. For 
d�0, "c,loc follows the quantum critical
behavior "c,loc�T ;�=0��T −x from a high-temperature cutoff
of order TK down to a crossover temperature T*, below
which the susceptibility saturates. Based on Eq. �79� with the

identification #	
d, one expects T*� �
d�2/�1+x� and, hence,

"c,loc�#;� = �c,� = T = 0� � �
d�−2x/�1+x�. �96�

The log-log plot in the inset of Fig. 31 has a slope 0.57 that
is fully consistent with Eq. �96�.

The results of this work show that gaining direct access to
the quantum critical point of the charge-coupled BFA model
requires simultaneous fine tuning of two parameters: the e-b
coupling � as a function of the hybridization � and the on-
site Coulomb repulsion U, and the particle-hole asymmetry
�determined in our calculations solely by 
d=�d+U /2, but in
general also affected by the shape of the conduction-band
density of states�. While it may prove very challenging, or
even impossible, to achieve this feat in any experimental
realization of the model, it should be a more feasible task to
carry out a rough tuning of parameters that places the system
in the quantum critical regime over some window of elevated
temperatures and/or frequencies.

VII. SUMMARY

We have conducted a detailed study of the charge-coupled
Bose-Fermi Anderson model, in which a magnetic impurity
both hybridizes with a structureless conduction band and is
coupled, via its charge, to a dissipative environment repre-
sented by a bosonic bath having a spectral function that van-
ishes as �s for vanishing frequencies � → 0. With increasing
coupling between the impurity and the bath, we find a cross-
over from a conventional Kondo effect—involving
conduction-band screening of the impurity spin degree of
freedom—to a charge-Kondo regime in which the delocal-
ized electrons quench impurity charge fluctuations.

Under conditions of strict particle-hole symmetry, further
increase in the impurity-bath coupling gives rise for 0�s
�1 to a quantum phase transition between the Kondo phase,
in which the static charge and spin susceptibilities approach
constant values at low temperatures, and a localized phase in
which the static charge susceptibility exhibits a Curie-Weiss
behavior indicative of an unquenched local charge degree of
freedom. For sub-Ohmic bosonic bath spectra �described by
an exponent s satisfying 0�s�1�, the continuous quantum
phase transition is governed by an interacting critical point
characterized by hyperscaling relations of critical exponents
and � /T scaling in the dynamical local charge susceptibility.
Moreover, the continuous phase transition of the present
model belongs to the same universality class as the transi-
tions of the spin-boson and the Ising-anisotropic Bose-Fermi
Kondo models. For an Ohmic �s=1� bosonic bath spectrum,
the quantum phase transition is of Kosterlitz-Thouless type.

In the presence of particle-hole asymmetry, the quantum
phase transition described in the previous paragraph is re-
placed by a smooth crossover, but for small-to-moderate
asymmetries, signatures of the symmetric quantum critical
point remain in the physical properties at elevated tempera-
tures and/or frequencies. Investigation of the regime of
strong particle-hole asymmetry, and of self-consistent ver-
sions of the charge-coupled Bose-Fermi Anderson model that
arise with the extended dynamical mean-field theory of lat-
tice fermions, will be pursued in future work.

0 0.1 0.2 0.3 0.4 0.5 0.6

λ

10
−30

10
−20

10
−10

10
0

T
L

δd = 1×10−2

δd = 5×10−3

δd = 5×10−4

δd = 5×10−5

s = 0.4

FIG. 30. �Color online� Variation in the bosonic localization
temperature TL with coupling � for s=0.4, U=0.1, ��0.01, ��9,
Ns=500, Nb=8, and various impurity asymmetries 
d=�d+U /2.
The solid lines were obtained by evaluating Eq. �95� with the �1
− n̂d�0 values shown in Fig. 29 and with CL=3.

10
−15

10
−10

10
−5

10
0

T

10
2

10
4

10
6

χ c,
lo

c(T
;λ

=
λ c

,ω
=

0)

s = 0.4

δd = 1×10−2

δd = 5×10−4

δd = 5×10−6

δd = 5×10−8

δd = 0

10
−12

10
−8

10
−4

δd

10
4

10
6

10
8

χ c,
lo

c(λ
=

λ c
,T

=
ω

=
0)

FIG. 31. �Color online� Static local charge susceptibility
"c,loc�T ;�=0� vs temperature T for s=0.4, U=0.1, ��0.01,
��0.298 35, ��9, Ns=500, Nb=8, and various impurity asymme-
tries 
d=�d+U /2. The e-b coupling equals the critical coupling �c

of the symmetric case 
d=0. Inset: zero-temperature static local
charge susceptibility "c,loc��=T=0� vs 
d.

CHENG, GLOSSOP, AND INGERSENT PHYSICAL REVIEW B 80, 165113 �2009�

165113-22



ACKNOWLEDGMENTS

We thank Brian Lane for useful discussions. Much of the
computational work was performed at the University of

Florida High-Performance Computing Center. This work was
supported in part by NSF Grants No. DMR-0710540 �M.C.
and K.I.� and No. DMR-0706625 �M.T.G.�.

*mxcheng@phys.ufl.edu
1 A. C. Hewson, The Kondo Problem to Heavy Fermions �Cam-

bridge University Press, Cambridge, UK, 1993�.
2 M. Vojta, Philos. Mag. 86, 1807 �2006�.
3 S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev.

Mod. Phys. 69, 315 �1997�.
4 S. Sachdev, Quantum Phase Transitions �Cambridge University

Press, Cambridge, UK, 1999�.
5 D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-

Magder, U. Meirav, and M. A. Kastner, Nature �London� 391,
156 �1998�; W. G. van der Wiel, S. De Franceschi, T. Fujisawa,
J. M. Elzerman, S. Tarucha, and L. P. Kouwenhoven, Science
289, 2105 �2000�; N. J. Craig, J. M. Taylor, E. A. Lester, C. M.
Marcus, M. P. Hanson, and A. C. Gossard, ibid. 304, 565
�2004�; A. N. Pasupathy, R. C. Bialczak, J. Martinek, J. E.
Grose, L. A. K. Donev, P. L. McEuen, and D. C. Ralph, ibid.
306, 86 �2004�; R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg,
and D. Goldhaber-Gordon, Nature �London� 446, 167 �2007�.

6 H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos,
and P. L. McEuen, Nature �London� 407, 57 �2000�; J. Park, A.
N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta,
M. Rinkoski, J. P. Sethna, H. D. Abruña, P. L. McEuen, and D.
C. Ralph, ibid. 417, 722 �2002�; W. Liang, M. P. Shores, M.
Bockrath, J. R. Long, and H. Park, ibid. 417, 725 �2002�; L. H.
Yu and D. Natelson, Nano Lett. 4, 79 �2004�; L. H. Yu, Z. K.
Keane, J. W. Ciszek, L. Cheng, M. P. Stewart, J. M. Tour, and D.
Natelson, Phys. Rev. Lett. 93, 266802 �2004�; J. J. Parks, A. R.
Champagne, G. R. Hutchison, S. Flores-Torres, H. D. Abruña,
and D. C. Ralph, ibid. 99, 026601 �2007�.

7 K. D. McCarthy, N. Prokof’ev, and M. T. Tuominen, Phys. Rev.
B 67, 245415 �2003�; A. Mitra, I. Aleiner, and A. J. Millis, ibid.
69, 245302 �2004�.

8 P. S. Cornaglia, H. Ness, and D. R. Grempel, Phys. Rev. Lett.
93, 147201 �2004�; P. S. Cornaglia, D. R. Grempel, and H.
Ness, Phys. Rev. B 71, 075320 �2005�.

9 J. Paaske and K. Flensberg, Phys. Rev. Lett. 94, 176801 �2005�;
J. Mravlje, A. Ramšak, and T. Rejec, Phys. Rev. B 72,
121403�R� �2005�; K. A. Al-Hassanieh, C. A. Büsser, G. B. Mar-
tins, and E. Dagotto, Phys. Rev. Lett. 95, 256807 �2005�; J.
Koch, M. E. Raikh, and F. von Oppen, ibid. 96, 056803 �2006�;
J. Mravlje, A. Ramšak, and T. Rejec, Phys. Rev. B 74, 205320
�2006�; C. A. Balseiro, P. S. Cornaglia, and D. R. Grempel, ibid.
74, 235409 �2006�.

10 R. Žitko and J. Bonča, Phys. Rev. B 74, 224411 �2006�.
11 M. D. Nuñez Regueiro, P. S. Cornaglia, G. Usaj, and C. A.

Balseiro, Phys. Rev. B 76, 075425 �2007�; M.-J. Hwang, M.-S.
Choi, and R. López, ibid. 76, 165312 �2007�; P. S. Cornaglia, G.
Usaj, and C. A. Balseiro, ibid. 76, 241403�R� �2007�; J. Mravlje,
A. Ramšak, and R. Žitko, Physica B 403, 1484 �2008�; J. Mrav-
lje and A. Ramšak, Phys. Rev. B 78, 235416 �2008�.

12 L. G. G. V. Dias da Silva and E. Dagotto, Phys. Rev. B 79,

155302 �2009�.
13 P. W. Anderson, Phys. Rev. 124, 41 �1961�.
14 H. Kaga, I. Sato, and M. Kobayashi, Prog. Theor. Phys. 64, 1918

�1980�; K. Schönhammer and O. Gunnarsson, Phys. Rev. B 30,
3141 �1984�; B. Alascio, C. Balseiro, G. Ortíz, M. Kiwi, and M.
Lagos, ibid. 38, 4698 �1988�; T. Östreich, ibid. 43, 6068 �1991�.

15 A. C. Hewson and D. Meyer, J. Phys.: Condens. Matter 14, 427
�2002�; G. S. Jeon, T.-H. Park, and H.-Y. Choi, Phys. Rev. B 68,
045106 �2003�.

16 H. C. Lee and H.-Y. Choi, Phys. Rev. B 69, 075109 �2004�; 70,
085114 �2004�.

17 E. Šimánek, Solid State Commun. 32, 731 �1979�; C. S. Ting, D.
N. Talwar, and K. L. Ngai, Phys. Rev. Lett. 45, 1213 �1980�.

18 H.-B. Schüttler and A. J. Fedro, Phys. Rev. B 38, 9063 �1988�.
19 K. G. Wilson, Rev. Mod. Phys. 47, 773 �1975�.
20 H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys.

Rev. B 21, 1003 �1980�; 21, 1044 �1980�.
21 R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395

�2008�.
22 A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.

Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 �1987�; U. Weiss,
Quantum Dissipative Systems �World Scientific, Singapore,
1999�.

23 A. Garg, J. N. Onuchic, and V. Ambegaokar, J. Chem. Phys. 83,
4491 �1985�; J. N. Onuchic, ibid. 86, 3925 �1987�; D. G. Evans,
R. D. Coalson, H. J. Kim, and Yu. Dakhnovskii, Phys. Rev. Lett.
75, 3649 �1995�.

24 A. Recati, P. O. Fedichev, W. Zwerger, J. von Delft, and P.
Zoller, Phys. Rev. Lett. 94, 040404 �2005�.

25 K. Le Hur and M.-R. Li, Phys. Rev. B 72, 073305 �2005�.
26 T. A. Costi and R. H. McKenzie, Phys. Rev. A 68, 034301

�2003�; A. N. Jordan and M. Büttiker, Phys. Rev. Lett. 92,
247901 �2004�; T. Stauber and F. Guinea, Phys. Rev. A 73,
042110 �2006�; A. Kopp, X. Jia, and S. Chakravarty, Ann. Phys.
�N.Y.� 322, 1466 �2007�; A. Kopp and K. Le Hur, Phys. Rev.
Lett. 98, 220401 �2007�; K. Le Hur, Ann. Phys. �N.Y.� 323,
2208 �2008�.

27 K. Le Hur, P. Doucet-Beaupré, and W. Hofstetter, Phys. Rev.
Lett. 99, 126801 �2007�.

28 H. Spohn and R. Dümcke, J. Stat. Phys. 41, 389 �1985�; S. K.
Kehrein and A. Mielke, Phys. Lett. A 219, 313 �1996�.

29 R. Bulla, N.-H. Tong, and M. Vojta, Phys. Rev. Lett. 91, 170601
�2003�; R. Bulla, H.-J. Lee, N.-H. Tong, and M. Vojta, Phys.
Rev. B 71, 045122 �2005�.

30 F. B. Anders, R. Bulla, and M. Vojta, Phys. Rev. Lett. 98,
210402 �2007�.

31 M. Vojta, N.-H. Tong, and R. Bulla, Phys. Rev. Lett. 94, 070604
�2005�.

32 A. Alvermann and H. Fehske, Phys. Rev. Lett. 102, 150601
�2009�.

33 A. M. Sengupta, Phys. Rev. B 61, 4041 �2000�.

QUANTUM PHASE TRANSITIONS IN A CHARGE-COUPLED… PHYSICAL REVIEW B 80, 165113 �2009�

165113-23



34 Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature �London�
413, 804 �2001�; Phys. Rev. B 68, 115103 �2003�; M. T. Glos-
sop and K. Ingersent, Phys. Rev. Lett. 99, 227203 �2007�; J.-X.
Zhu, S. Kirchner, R. Bulla, and Q. Si, ibid. 99, 227204 �2007�.

35 K. Le Hur, Phys. Rev. Lett. 92, 196804 �2004�; M.-R. Li and K.
Le Hur, ibid. 93, 176802 �2004�; M.-R. Li, K. Le Hur, and W.
Hofstetter, ibid. 95, 086406 �2005�; L. Borda, G. Zaránd, and P.
Simon, Phys. Rev. B 72, 155311 �2005�.

36 S. Kirchner, L. Zhu, Q. Si, and D. Natelson, Proc. Natl. Acad.
Sci. U.S.A. 102, 18824 �2005�; S. Kirchner and Q. Si,
arXiv:0805.3717 �unpublished�.

37 L. Zhu and Q. Si, Phys. Rev. B 66, 024426 �2002�; G. Zaránd
and E. Demler, ibid. 66, 024427 �2002�.

38 M. T. Glossop and K. Ingersent, Phys. Rev. Lett. 95, 067202
�2005�.

39 M. T. Glossop and K. Ingersent, Phys. Rev. B 75, 104410
�2007�.

40 C.-H. Chung, M. T. Glossop, L. Fritz, M. Kirćan, K. Ingersent,
and M. Vojta, Phys. Rev. B 76, 235103 �2007�; M. T. Glossop,
N. Khoshkhou, and K. Ingersent, Physica B 403, 1303 �2008�.

41 P. M. Riseborough, in Proceedings of the International Confer-
ence on Valence Instabilities and Related Narrow-Band Phe-
nomena, Rochester, NY, 1976, edited by R. D. Parks �Plenum,
New York, 1977�, p. 405.

42 F. D. M. Haldane, Phys. Rev. B 15, 281 �1977�.
43 F. D. M. Haldane, Phys. Rev. B 15, 2477 �1977�.
44 A. C. Hewson and D. M. Newns, J. Phys. C 13, 4477 �1980�.
45 J. L. Smith and Q. Si, Europhys. Lett. 45, 228 �1999�.
46 J. L. Smith and Q. Si, Phys. Rev. B 61, 5184 �2000�.
47 H. Kajueter, Ph.D. thesis, Rutgers University, 1996; Q. Si and J.

L. Smith, Phys. Rev. Lett. 77, 3391 �1996�; R. Chitra and G.
Kotliar, ibid. 84, 3678 �2000�.

48 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 �1996�.

49 M. E. Fisher, S.-K. Ma, and B. G. Nickel, Phys. Rev. Lett. 29,
917 �1972�; E. Luijten and H. W. J. Blöte, ibid. 76, 1557 �1996�;
Phys. Rev. B 56, 8945 �1997�.

50 A. Winter, H. Rieger, M. Vojta, and R. Bulla, Phys. Rev. Lett.
102, 030601 �2009�.

51 S. Kirchner, Q. Si, and K. Ingersent, Phys. Rev. Lett. 102,
166405 �2009�; M. Vojta, N.-H. Tong, and R. Bulla, ibid. 102,
249904�E� �2009�.

52 K. Ingersent and Q. Si, Phys. Rev. Lett. 89, 076403 �2002�.
53 B. A. Jones, C. M. Varma, and J. W. Wilkins, Phys. Rev. Lett.

61, 125 �1988�.
54 J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 �1966�.
55 I. G. Lang and Yu. A. Firsov, Zh. Eksp. Teor. Fiz. 43, 1843

�1962� �Sov. Phys. JETP 16, 1301 �1963��.
56 A number of the results presented in Sec. IV were obtained using

unphysically large values of the hybridization width �. These
values were employed to accelerate the convergence of the NRG
levels to the critical spectrum, and thereby to minimize compu-
tational rounding errors.

57 This decomposition of the BFK critical spectrum was not explic-
itly noted in Refs. 38 and 39. However, it can be understood
�following arguments analogous to those presented here for the
charge-coupled BFA model� under the assumption that, near the
phase boundary, the longitudinal exchange coupling renormal-
izes rapidly to Jz=�.

58 S. Sachdev, Z. Phys. B: Condens. Matter 94, 469 �1994�.
59 O. Sakai, Y. Shimizu, and T. Kasuya, J. Phys. Soc. Jpn. 58, 3666

�1989�; R. Bulla, T. A. Costi, and D. Vollhardt, Phys. Rev. B 64,
045103 �2001�.

60 T. A. Costi, A. C. Hewson, and V. Zlatić, J. Phys.: Condens.
Matter 6, 2519 �1994�.

61 From Eqs. �58� and �76�, and Tables II and III, one expects the
vanishing of �K�T* and of 4 /"c,loc�0,0� on approach to the
critical point to be governed by different powers of �c−�.

CHENG, GLOSSOP, AND INGERSENT PHYSICAL REVIEW B 80, 165113 �2009�

165113-24


